All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27690 by abdo imad last updated on 12/Jan/18
findI=∫∫Dln(1+x+y)dxdywithD={(x,y)∈R2/x+y⩽1andx⩾0andy⩾0}.
Commented by abdo imad last updated on 14/Jan/18
0⩽x⩽1−yand0⩽y⩽1soI=∫01(∫01−yln(1+x+y)dx)dybutthech.1+x+y=tgive∫01−yln(1+x+y)dx=∫1+y2lntdt=[tlnt−t]1+y2=2ln2−2−(1+y)ln(1+y)+1+y=2ln2−1+y−(1+y)ln(1+y)I=∫01(2ln2−1)dy+∫01ydy−∫01(1+y)ln(1+y)dyI=2ln2−12−∫01(1+y)ln(1+y)dythech.1+y=tgive∫01(1+y)ln(1+y)dy=∫12tln(t)dt=[t22lnt]12−∫12t2dt=2ln2−12[t22]12=2ln2−12(32)=2ln2−34I=2ln2−12−2ln2+34=14.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com