Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27690 by abdo imad last updated on 12/Jan/18

find   I=  ∫∫_D ln(1+x+y)dxdy  with  D= {(x,y)∈R^2    /  x+y≤1 and x≥0 and y≥0 }.

$${find}\:\:\:{I}=\:\:\int\int_{{D}} {ln}\left(\mathrm{1}+{x}+{y}\right){dxdy}\:\:{with} \\ $$$${D}=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:\:\:/\:\:{x}+{y}\leqslant\mathrm{1}\:{and}\:{x}\geqslant\mathrm{0}\:{and}\:{y}\geqslant\mathrm{0}\:\right\}. \\ $$

Commented by abdo imad last updated on 14/Jan/18

0≤x≤1−y   and  0≤y≤1 so    I = ∫_0 ^1 (  ∫_0 ^(1−y)  ln(1+x+y)dx)dy but the ch. 1+x+y =t give   ∫_0 ^(1−y)  ln(1+x +y)dx= ∫_(1+y) ^2 lnt dt = [tlnt −t]_(1+y) ^2   = 2ln2 −2 −(1+y)ln(1+y) +1+y  =2ln2 −1 +y −(1+y)ln(1+y)  I= ∫_0 ^1 (2ln2−1)dy +∫_0 ^1 ydy −∫_0 ^1 (1+y)ln(1+y)dy  I= 2ln2 −(1/2) − ∫_0 ^1 (1+y)ln(1+y)dy the ch.1+y=t give  ∫_0 ^1  (1+y)ln(1+y)dy= ∫_1 ^2 tln(t)dt  =[ (t^2 /2) lnt]_1 ^2   −∫_1 ^2  (t/2)dt  = 2ln2 −(1/2)[(t^2 /2)]_1 ^2  =2ln2−(1/2)((3/2))  = 2ln2 −(3/4)  I= 2ln2 −(1/2)  −2ln2 +(3/4)= (1/4) .

$$\mathrm{0}\leqslant{x}\leqslant\mathrm{1}−{y}\:\:\:{and}\:\:\mathrm{0}\leqslant{y}\leqslant\mathrm{1}\:{so}\:\: \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\:\:\int_{\mathrm{0}} ^{\mathrm{1}−{y}} \:{ln}\left(\mathrm{1}+{x}+{y}\right){dx}\right){dy}\:{but}\:{the}\:{ch}.\:\mathrm{1}+{x}+{y}\:={t}\:{give} \\ $$$$\:\int_{\mathrm{0}} ^{\mathrm{1}−{y}} \:{ln}\left(\mathrm{1}+{x}\:+{y}\right){dx}=\:\int_{\mathrm{1}+{y}} ^{\mathrm{2}} {lnt}\:{dt}\:=\:\left[{tlnt}\:−{t}\right]_{\mathrm{1}+{y}} ^{\mathrm{2}} \\ $$$$=\:\mathrm{2}{ln}\mathrm{2}\:−\mathrm{2}\:−\left(\mathrm{1}+{y}\right){ln}\left(\mathrm{1}+{y}\right)\:+\mathrm{1}+{y} \\ $$$$=\mathrm{2}{ln}\mathrm{2}\:−\mathrm{1}\:+{y}\:−\left(\mathrm{1}+{y}\right){ln}\left(\mathrm{1}+{y}\right) \\ $$$${I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{2}{ln}\mathrm{2}−\mathrm{1}\right){dy}\:+\int_{\mathrm{0}} ^{\mathrm{1}} {ydy}\:−\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+{y}\right){ln}\left(\mathrm{1}+{y}\right){dy} \\ $$$${I}=\:\mathrm{2}{ln}\mathrm{2}\:−\frac{\mathrm{1}}{\mathrm{2}}\:−\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+{y}\right){ln}\left(\mathrm{1}+{y}\right){dy}\:{the}\:{ch}.\mathrm{1}+{y}={t}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}+{y}\right){ln}\left(\mathrm{1}+{y}\right){dy}=\:\int_{\mathrm{1}} ^{\mathrm{2}} {tln}\left({t}\right){dt} \\ $$$$=\left[\:\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\:{lnt}\right]_{\mathrm{1}} ^{\mathrm{2}} \:\:−\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{{t}}{\mathrm{2}}{dt}\:\:=\:\mathrm{2}{ln}\mathrm{2}\:−\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{1}} ^{\mathrm{2}} \:=\mathrm{2}{ln}\mathrm{2}−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$$$=\:\mathrm{2}{ln}\mathrm{2}\:−\frac{\mathrm{3}}{\mathrm{4}} \\ $$$${I}=\:\mathrm{2}{ln}\mathrm{2}\:−\frac{\mathrm{1}}{\mathrm{2}}\:\:−\mathrm{2}{ln}\mathrm{2}\:+\frac{\mathrm{3}}{\mathrm{4}}=\:\frac{\mathrm{1}}{\mathrm{4}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com