All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27691 by abdo imad last updated on 12/Jan/18
letgiveA=∫∫0⩽y⩽x⩽1dxdxy(1+x2)(1+y2)andB=∫0π4ln(2cos2θ)2cos(2θ)dθcalculateAandprovethatB=A.
Commented by abdo imad last updated on 19/Jan/18
A=∫01(∫0xdy1+y2)dx1+x2=∫01arctanx1+x2dxbypartsA=[actanx.arctanx]01−∫01arctanxdx1+x22A=π216⇒A=π232B=∫0π4ln(21+cos(2θ)2)2cos(2θ)dθ=∫0π4ln(1+cos(2θ))2cos(2θ)dθ=∫0π2ln(1+cost)2costdt2=14∫0π2ln(1+cost)costdtletintroduceF(x)=∫0π2ln(1+xcost)costdtwith−1<x<1F′(x)=∫0π2dt1+xcostthech.tan(t2)=ugiveF(x)=∫0111+x1−u21+u22du1+u2=∫012du1+u2+x−xu2=∫012du(1−x)u2+1+x=21−x∫01duu2+1+x1−xthech.u=1+x1−xtgiveF(x)=21−x∫01−x1+x11+x1−x(1+u2)1+x1−xdt=21−x1−x1+x1+x1−x∫01−x1+xdt1+t2=21−x2arctan(1−x1+x)butwithx=cosθarctan(1−x1+x)=arctan(tan(θ2))=θ2F(x)=21−x2arcosx2=arcosx1−x2F(x)=∫0xarcost1−t2dt+λ(λ=F(0)=0)⇒F(x)=∫0xarcost1−t2dtB=14F(1)=14∫01arcost1−t2dtbypartsletputI=∫01arcost1−t2dtbypartsI=−arcost.arcost]01−∫01(−arcost)−dt1−t22I=π24⇒I=π28⇒F(1)=π28andB=π232=A.forF(x)=∫0xarcost1−t2dtletintegratebypartsF(x)=−arcotarcost]0x−∫0x(−arcosx)−dt1−x2=π24−(arcosx)2−F(x)⇒F(x)=π28−12(arcosx)2so∫0π2ln(1+xcost)costdt=π28−12(arcosx)2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com