Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27691 by abdo imad last updated on 12/Jan/18

let give  A=∫∫_(0≤y≤x≤1)       ((dxdxy)/((1+x^2 )(1+y^2 )))  and  B= ∫_0 ^(π/4)  ((ln(2cos^2 θ))/(2cos(2θ)))dθ  calculate A and prove that B=A.

letgiveA=0yx1dxdxy(1+x2)(1+y2)andB=0π4ln(2cos2θ)2cos(2θ)dθcalculateAandprovethatB=A.

Commented by abdo imad last updated on 19/Jan/18

A= ∫_0 ^1  (∫_0 ^x    (dy/(1+y^2 ))) (dx/(1+x^2 )) = ∫_0 ^1    ((arctanx)/(1+x^2 ))dx  by parts  A= [actanx.arctanx]_0 ^1  − ∫_0 ^1  arctanx (dx/(1+x^2 ))  2A=(π^2 /(16))  ⇒ A=  (π^2 /(32))  B= ∫_0 ^(π/4)   ((ln(2((1+cos(2θ))/2)))/(2cos(2θ)))dθ= ∫_0 ^(π/4)    ((ln(1+cos(2θ)))/(2cos(2θ)))dθ  = ∫_0 ^(π/2)     ((ln(1+cost))/(2cost)) (dt/2) = (1/4) ∫_0 ^(π/2)    ((ln(1+cost))/(cost))dt let introduce  F(x)= ∫_0 ^(π/2)    ((ln(1+xcost))/(cost))dt  with  −1<x<1  F^′ (x)=  ∫_0 ^(π/2)       (dt/(1+xcost))  the ch. tan((t/2))=u give  F^ (x)=  ∫_0 ^(1      )  (1/(1+x((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))= ∫_0 ^1     ((2du)/(1+u^2  +x −xu^2 ))  = ∫_0 ^1        ((2du)/((1−x)u^2 +1+x)) = (2/(1−x)) ∫_0 ^1    (du/(u^2  +((1+x)/(1−x)))) the ch.  u=(√((1+x)/(1−x)))t give  F^ (x)=  (2/(1−x)) ∫_0 ^((√(1−x))/(√(1+x  )))    (1/(((1+x)/(1−x))(1+u^2 ))) ((√(1+x))/(√(1−x)))dt  = (2/(1−x)) ((1−x)/(1+x)) ((√(1+x))/(√(1−x))) ∫_0 ^((√(1−x))/(√(1+x)))     (dt/(1+t^2 ))  = (2/(√(1−x^2 ))) arctan((√((1−x)/(1+x)))) but with  x=cosθ  arctan((√((1−x)/(1+x))))=arctan(tan((θ/2)))= (θ/2)  F^ (x)=(2/(√(1−x^2 ))) ((arcosx)/2)= ((arcosx)/(√(1−x^2 )))  F(x)= ∫_0 ^x     ((arcost)/(√(1−t^2 )))dt +λ    ( λ=F(0)=0)  ⇒    F(x)=  ∫_0 ^x   ((arcost)/(√(1−t^2 )))dt  B= (1/4) F(1)= (1/4) ∫_0 ^(1  )    ((arcost)/(√(1−t^2 )))dt by parts  let put I= ∫_0 ^1   ((arcost)/(√(1−t^2 ))) dt    by parts  I=  −arcost.arcost]_0 ^1  − ∫_0 ^1 (−arcost) ((−dt)/(√(1−t^2 )))  2I= (π^2 /4)  ⇒ I=  (π^2 /8)   ⇒ F(1)= (π^2 /8)  and B= (π^2 /(32))  =A.  for  F(x)= ∫_0 ^x    ((arcost)/(√(1−t^2 )))dt   let integrate by parts  F(x)= −arcot arcost]_0 ^x   − ∫_0 ^x  (−arcosx) ((−dt)/(√(1−x^2 )))  = (π^2 /4) −(arcosx)^2  −F(x)  ⇒ F(x)= (π^2 /8) −(1/2) (arcosx)^2   so  ∫_0 ^(π/2) ((ln(1+xcost))/(cost))dt = (π^2 /8) − (1/2) (arcosx)^2  .

A=01(0xdy1+y2)dx1+x2=01arctanx1+x2dxbypartsA=[actanx.arctanx]0101arctanxdx1+x22A=π216A=π232B=0π4ln(21+cos(2θ)2)2cos(2θ)dθ=0π4ln(1+cos(2θ))2cos(2θ)dθ=0π2ln(1+cost)2costdt2=140π2ln(1+cost)costdtletintroduceF(x)=0π2ln(1+xcost)costdtwith1<x<1F(x)=0π2dt1+xcostthech.tan(t2)=ugiveF(x)=0111+x1u21+u22du1+u2=012du1+u2+xxu2=012du(1x)u2+1+x=21x01duu2+1+x1xthech.u=1+x1xtgiveF(x)=21x01x1+x11+x1x(1+u2)1+x1xdt=21x1x1+x1+x1x01x1+xdt1+t2=21x2arctan(1x1+x)butwithx=cosθarctan(1x1+x)=arctan(tan(θ2))=θ2F(x)=21x2arcosx2=arcosx1x2F(x)=0xarcost1t2dt+λ(λ=F(0)=0)F(x)=0xarcost1t2dtB=14F(1)=1401arcost1t2dtbypartsletputI=01arcost1t2dtbypartsI=arcost.arcost]0101(arcost)dt1t22I=π24I=π28F(1)=π28andB=π232=A.forF(x)=0xarcost1t2dtletintegratebypartsF(x)=arcotarcost]0x0x(arcosx)dt1x2=π24(arcosx)2F(x)F(x)=π2812(arcosx)2so0π2ln(1+xcost)costdt=π2812(arcosx)2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com