Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 27767 by Rasheed.Sindhi last updated on 14/Jan/18

If the number of divisors of a  number is odd,prove that the  number is perfect square and  vice versa.

$$\mathrm{If}\:\mathrm{the}\:\boldsymbol{\mathrm{number}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{divisors}}\:\mathrm{of}\:\mathrm{a} \\ $$$$\mathrm{number}\:\mathrm{is}\:\boldsymbol{\mathrm{odd}},\mathrm{prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{is}\:\boldsymbol{\mathrm{perfect}}\:\boldsymbol{\mathrm{square}}\:\mathrm{and} \\ $$$$\mathrm{vice}\:\mathrm{versa}. \\ $$

Answered by mrW2 last updated on 14/Jan/18

Every number n can be expressed as  n=Π_(i=1) ^k p_i ^e_i  , where p_i  is prime,  and the number of its divisors is  d(n)=Π_(i=1) ^k (e_i +1)    If a number N is a perfect square,  i.e. N=n^2 , then  N=(Π_(i=1) ^k p_i ^e_i  )^2 =Π_(i=1) ^k p_i ^(2e_i )   d(N)=Π_(i=1) ^k (2e_i +1)  since the product of odd numbers is odd,  therefore d(N) is odd.    If d(n)=Π_(i=1) ^k (e_i +1) is odd, it means e_i   must be even, let′s say e_i =2f_i , then  n=Π_(i=1) ^k p_i ^e_i  =Π_(i=1) ^k p_i ^(2f_i ) =(Π_(i=1) ^k p_i ^f_i  )^2   it means n is a perfect square.

$${Every}\:{number}\:{n}\:{can}\:{be}\:{expressed}\:{as} \\ $$$${n}=\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}{p}_{{i}} ^{{e}_{{i}} } ,\:{where}\:{p}_{{i}} \:{is}\:{prime}, \\ $$$${and}\:{the}\:{number}\:{of}\:{its}\:{divisors}\:{is} \\ $$$${d}\left({n}\right)=\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}\left({e}_{{i}} +\mathrm{1}\right) \\ $$$$ \\ $$$${If}\:{a}\:{number}\:{N}\:{is}\:{a}\:{perfect}\:{square}, \\ $$$${i}.{e}.\:{N}={n}^{\mathrm{2}} ,\:{then} \\ $$$${N}=\left(\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}{p}_{{i}} ^{{e}_{{i}} } \right)^{\mathrm{2}} =\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}{p}_{{i}} ^{\mathrm{2}{e}_{{i}} } \\ $$$${d}\left({N}\right)=\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}\left(\mathrm{2}{e}_{{i}} +\mathrm{1}\right) \\ $$$${since}\:{the}\:{product}\:{of}\:{odd}\:{numbers}\:{is}\:{odd}, \\ $$$${therefore}\:{d}\left({N}\right)\:{is}\:{odd}. \\ $$$$ \\ $$$${If}\:{d}\left({n}\right)=\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}\left({e}_{{i}} +\mathrm{1}\right)\:{is}\:{odd},\:{it}\:{means}\:{e}_{{i}} \\ $$$${must}\:{be}\:{even},\:{let}'{s}\:{say}\:{e}_{{i}} =\mathrm{2}{f}_{{i}} ,\:{then} \\ $$$${n}=\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}{p}_{{i}} ^{{e}_{{i}} } =\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}{p}_{{i}} ^{\mathrm{2}{f}_{{i}} } =\left(\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}{p}_{{i}} ^{{f}_{{i}} } \right)^{\mathrm{2}} \\ $$$${it}\:{means}\:{n}\:{is}\:{a}\:{perfect}\:{square}. \\ $$

Commented by mrW2 last updated on 15/Jan/18

An other way to prove:  Generally, if m is a divisor of the   number N, then (N/m) is also a divisor  of it. That means the divisors are  always pairwise. Every divisor has  a corresponding partner.    If the number N is perfect square, i.e.  N=n^2 , it means n is a divisor of it,  but (N/n)=n, the partner of n is in fact  itself, it means  if the number is perfect square, its  number of divisors is odd.    On the other side, if the number of  divisors of N is odd, one divisor, say  n,  and its partner has the same value, i.e.  n=(N/n)  ⇒N=n^2   or N is perfect square.

$${An}\:{other}\:{way}\:{to}\:{prove}: \\ $$$${Generally},\:{if}\:{m}\:{is}\:{a}\:{divisor}\:{of}\:{the}\: \\ $$$${number}\:{N},\:{then}\:\frac{{N}}{{m}}\:{is}\:{also}\:{a}\:{divisor} \\ $$$${of}\:{it}.\:{That}\:{means}\:{the}\:{divisors}\:{are} \\ $$$${always}\:{pairwise}.\:{Every}\:{divisor}\:{has} \\ $$$${a}\:{corresponding}\:{partner}. \\ $$$$ \\ $$$${If}\:{the}\:{number}\:{N}\:{is}\:{perfect}\:{square},\:{i}.{e}. \\ $$$${N}={n}^{\mathrm{2}} ,\:{it}\:{means}\:{n}\:{is}\:{a}\:{divisor}\:{of}\:{it}, \\ $$$${but}\:\frac{{N}}{{n}}={n},\:{the}\:{partner}\:{of}\:{n}\:{is}\:{in}\:{fact} \\ $$$${itself},\:{it}\:{means} \\ $$$${if}\:{the}\:{number}\:{is}\:{perfect}\:{square},\:{its} \\ $$$${number}\:{of}\:{divisors}\:{is}\:{odd}. \\ $$$$ \\ $$$${On}\:{the}\:{other}\:{side},\:{if}\:{the}\:{number}\:{of} \\ $$$${divisors}\:{of}\:{N}\:{is}\:{odd},\:{one}\:{divisor},\:{say}\:\:{n}, \\ $$$${and}\:{its}\:{partner}\:{has}\:{the}\:{same}\:{value},\:{i}.{e}. \\ $$$${n}=\frac{{N}}{{n}} \\ $$$$\Rightarrow{N}={n}^{\mathrm{2}} \\ $$$${or}\:{N}\:{is}\:{perfect}\:{square}. \\ $$

Commented by Rasheed.Sindhi last updated on 15/Jan/18

 Thanks Very Much Sir!  Knowledge increasing answer for me!

$$\:\mathcal{T}{hanks}\:{Very}\:{Much}\:{Sir}! \\ $$$${Knowledge}\:{increasing}\:{answer}\:{for}\:{me}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com