Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 27771 by ajfour last updated on 14/Jan/18

Commented by ajfour last updated on 14/Jan/18

If an equilateral triangle of  edge length a is rotated about  about its vertex A by an angle θ  find the area common in its  new and previous positions.  (the pink area).

$${If}\:{an}\:{equilateral}\:{triangle}\:{of} \\ $$$${edge}\:{length}\:{a}\:{is}\:{rotated}\:{about} \\ $$$${about}\:{its}\:{vertex}\:{A}\:{by}\:{an}\:{angle}\:\theta \\ $$$${find}\:{the}\:{area}\:{common}\:{in}\:{its} \\ $$$${new}\:{and}\:{previous}\:{positions}. \\ $$$$\left({the}\:{pink}\:{area}\right). \\ $$

Answered by mrW2 last updated on 14/Jan/18

Commented by mrW2 last updated on 14/Jan/18

2α+θ=(π/3)  ⇒α=(π/6)−(θ/2)  ((BP)/(sin θ))=((AB)/(sin (π−(π/3)−θ)))=(a/(sin ((π/3)+θ)))  ⇒BP=((sin θ)/(sin ((π/3)+θ)))×a  similarly  ((CM)/(sin α))=(a/(sin ((π/3)+α)))  ⇒CM=((sin α)/(sin ((π/3)+α)))×a=((sin ((π/6)−(θ/2)))/(sin ((π/2)−(θ/2))))×a=((sin ((π/6)−(θ/2)))/(cos (θ/2)))×a    PM=a−((sin θ)/(sin ((π/3)+θ)))×a−((sin ((π/6)−(θ/2)))/(cos (θ/2)))×a  =a[1−((sin θ)/(((√3)/2) cos θ+(1/2) sin θ))−(((1/2) cos (θ/2)−((√3)/2) sin (θ/2))/(cos (θ/2)))]  =a[(1/2)−((2 tan θ)/((√3)+tan θ))+((√3)/2) tan (θ/2)]    A_(ΔAPM) =(1/2)×PM×(((√3) a)/2)=(((√3) a^2 )/4)[(1/2)−((2 tan θ)/((√3)+tan θ))+((√3)/2) tan (θ/2)]    ⇒A_(APMQ) =2A_(ΔAPM) =(((√3) a^2 )/4)[1−((4 tan θ)/((√3)+tan θ))+(√3) tan (θ/2)]

$$\mathrm{2}\alpha+\theta=\frac{\pi}{\mathrm{3}} \\ $$$$\Rightarrow\alpha=\frac{\pi}{\mathrm{6}}−\frac{\theta}{\mathrm{2}} \\ $$$$\frac{{BP}}{\mathrm{sin}\:\theta}=\frac{{AB}}{\mathrm{sin}\:\left(\pi−\frac{\pi}{\mathrm{3}}−\theta\right)}=\frac{{a}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\theta\right)} \\ $$$$\Rightarrow{BP}=\frac{\mathrm{sin}\:\theta}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\theta\right)}×{a} \\ $$$${similarly} \\ $$$$\frac{{CM}}{\mathrm{sin}\:\alpha}=\frac{{a}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\alpha\right)} \\ $$$$\Rightarrow{CM}=\frac{\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\alpha\right)}×{a}=\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{6}}−\frac{\theta}{\mathrm{2}}\right)}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\frac{\theta}{\mathrm{2}}\right)}×{a}=\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{6}}−\frac{\theta}{\mathrm{2}}\right)}{\mathrm{cos}\:\frac{\theta}{\mathrm{2}}}×{a} \\ $$$$ \\ $$$${PM}={a}−\frac{\mathrm{sin}\:\theta}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\theta\right)}×{a}−\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{6}}−\frac{\theta}{\mathrm{2}}\right)}{\mathrm{cos}\:\frac{\theta}{\mathrm{2}}}×{a} \\ $$$$={a}\left[\mathrm{1}−\frac{\mathrm{sin}\:\theta}{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{cos}\:\theta+\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{sin}\:\theta}−\frac{\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{cos}\:\frac{\theta}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}{\mathrm{cos}\:\frac{\theta}{\mathrm{2}}}\right] \\ $$$$={a}\left[\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{2}\:\mathrm{tan}\:\theta}{\sqrt{\mathrm{3}}+\mathrm{tan}\:\theta}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\right] \\ $$$$ \\ $$$${A}_{\Delta{APM}} =\frac{\mathrm{1}}{\mathrm{2}}×{PM}×\frac{\sqrt{\mathrm{3}}\:{a}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}\:{a}^{\mathrm{2}} }{\mathrm{4}}\left[\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{2}\:\mathrm{tan}\:\theta}{\sqrt{\mathrm{3}}+\mathrm{tan}\:\theta}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\right] \\ $$$$ \\ $$$$\Rightarrow{A}_{{APMQ}} =\mathrm{2}{A}_{\Delta{APM}} =\frac{\sqrt{\mathrm{3}}\:{a}^{\mathrm{2}} }{\mathrm{4}}\left[\mathrm{1}−\frac{\mathrm{4}\:\mathrm{tan}\:\theta}{\sqrt{\mathrm{3}}+\mathrm{tan}\:\theta}+\sqrt{\mathrm{3}}\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\right] \\ $$

Commented by ajfour last updated on 15/Jan/18

thank you sir. please view my  way if you haven′t.

$${thank}\:{you}\:{sir}.\:{please}\:{view}\:{my} \\ $$$${way}\:{if}\:{you}\:{haven}'{t}. \\ $$

Commented by mrW2 last updated on 16/Jan/18

Your way is very nice too. I didn′t come  to it.

$${Your}\:{way}\:{is}\:{very}\:{nice}\:{too}.\:{I}\:{didn}'{t}\:{come} \\ $$$${to}\:{it}. \\ $$

Answered by ajfour last updated on 14/Jan/18

Commented by ajfour last updated on 14/Jan/18

eq. of BP :  y=−(√3)(x−a)  eq. of AP :   y=xtan θ  eq. of AM :  y=xtan (θ+α)                              =xtan ((π/6)+(θ/2))  y_P =−(√3)(x_P −a)=x_P tan θ  ⇒ y_P =((a(√3)tan θ)/((√3)+tan θ))  similarly y_M =((a(√3)tan ((π/6)+(θ/2)))/((√3)+tan ((π/6)+(θ/2))))      =((a(√3))/((√3)(((1−((tan (θ/2))/(√3)))/((1/(√3))+tan (θ/2))))+1))  =((a(√3))/((√3)[(((√3)−tan (θ/2))/(1+(√3)tan (θ/2)))]+1))  =((a(√3)[1+(√3)tan (θ/2)])/4)  reqd. area=2×(a/2)(y_M −y_P )  =((a^2 (√3))/4)[1+(√3)tan (θ/2)−((4tan θ)/((√3)+tan θ))] .

$${eq}.\:{of}\:{BP}\:: \\ $$$${y}=−\sqrt{\mathrm{3}}\left({x}−{a}\right) \\ $$$${eq}.\:{of}\:{AP}\::\:\:\:{y}={x}\mathrm{tan}\:\theta \\ $$$${eq}.\:{of}\:{AM}\::\:\:{y}={x}\mathrm{tan}\:\left(\theta+\alpha\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={x}\mathrm{tan}\:\left(\frac{\pi}{\mathrm{6}}+\frac{\theta}{\mathrm{2}}\right) \\ $$$${y}_{{P}} =−\sqrt{\mathrm{3}}\left({x}_{{P}} −{a}\right)={x}_{{P}} \mathrm{tan}\:\theta \\ $$$$\Rightarrow\:{y}_{{P}} =\frac{{a}\sqrt{\mathrm{3}}\mathrm{tan}\:\theta}{\sqrt{\mathrm{3}}+\mathrm{tan}\:\theta} \\ $$$${similarly}\:{y}_{{M}} =\frac{{a}\sqrt{\mathrm{3}}\mathrm{tan}\:\left(\frac{\pi}{\mathrm{6}}+\frac{\theta}{\mathrm{2}}\right)}{\sqrt{\mathrm{3}}+\mathrm{tan}\:\left(\frac{\pi}{\mathrm{6}}+\frac{\theta}{\mathrm{2}}\right)} \\ $$$$\:\:\:\:=\frac{{a}\sqrt{\mathrm{3}}}{\sqrt{\mathrm{3}}\left(\frac{\mathrm{1}−\frac{\mathrm{tan}\:\left(\theta/\mathrm{2}\right)}{\sqrt{\mathrm{3}}}}{\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}+\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}\right)+\mathrm{1}} \\ $$$$=\frac{{a}\sqrt{\mathrm{3}}}{\sqrt{\mathrm{3}}\left[\frac{\sqrt{\mathrm{3}}−\mathrm{tan}\:\left(\theta/\mathrm{2}\right)}{\mathrm{1}+\sqrt{\mathrm{3}}\mathrm{tan}\:\left(\theta/\mathrm{2}\right)}\right]+\mathrm{1}} \\ $$$$=\frac{{a}\sqrt{\mathrm{3}}\left[\mathrm{1}+\sqrt{\mathrm{3}}\mathrm{tan}\:\left(\theta/\mathrm{2}\right)\right]}{\mathrm{4}} \\ $$$${reqd}.\:{area}=\mathrm{2}×\frac{{a}}{\mathrm{2}}\left({y}_{{M}} −{y}_{{P}} \right) \\ $$$$=\frac{{a}^{\mathrm{2}} \sqrt{\mathrm{3}}}{\mathrm{4}}\left[\mathrm{1}+\sqrt{\mathrm{3}}\mathrm{tan}\:\frac{\theta}{\mathrm{2}}−\frac{\mathrm{4tan}\:\theta}{\sqrt{\mathrm{3}}+\mathrm{tan}\:\theta}\right]\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com