Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 27771 by ajfour last updated on 14/Jan/18

Commented by ajfour last updated on 14/Jan/18

If an equilateral triangle of  edge length a is rotated about  about its vertex A by an angle θ  find the area common in its  new and previous positions.  (the pink area).

IfanequilateraltriangleofedgelengthaisrotatedaboutaboutitsvertexAbyanangleθfindtheareacommoninitsnewandpreviouspositions.(thepinkarea).

Answered by mrW2 last updated on 14/Jan/18

Commented by mrW2 last updated on 14/Jan/18

2α+θ=(π/3)  ⇒α=(π/6)−(θ/2)  ((BP)/(sin θ))=((AB)/(sin (π−(π/3)−θ)))=(a/(sin ((π/3)+θ)))  ⇒BP=((sin θ)/(sin ((π/3)+θ)))×a  similarly  ((CM)/(sin α))=(a/(sin ((π/3)+α)))  ⇒CM=((sin α)/(sin ((π/3)+α)))×a=((sin ((π/6)−(θ/2)))/(sin ((π/2)−(θ/2))))×a=((sin ((π/6)−(θ/2)))/(cos (θ/2)))×a    PM=a−((sin θ)/(sin ((π/3)+θ)))×a−((sin ((π/6)−(θ/2)))/(cos (θ/2)))×a  =a[1−((sin θ)/(((√3)/2) cos θ+(1/2) sin θ))−(((1/2) cos (θ/2)−((√3)/2) sin (θ/2))/(cos (θ/2)))]  =a[(1/2)−((2 tan θ)/((√3)+tan θ))+((√3)/2) tan (θ/2)]    A_(ΔAPM) =(1/2)×PM×(((√3) a)/2)=(((√3) a^2 )/4)[(1/2)−((2 tan θ)/((√3)+tan θ))+((√3)/2) tan (θ/2)]    ⇒A_(APMQ) =2A_(ΔAPM) =(((√3) a^2 )/4)[1−((4 tan θ)/((√3)+tan θ))+(√3) tan (θ/2)]

2α+θ=π3α=π6θ2BPsinθ=ABsin(ππ3θ)=asin(π3+θ)BP=sinθsin(π3+θ)×asimilarlyCMsinα=asin(π3+α)CM=sinαsin(π3+α)×a=sin(π6θ2)sin(π2θ2)×a=sin(π6θ2)cosθ2×aPM=asinθsin(π3+θ)×asin(π6θ2)cosθ2×a=a[1sinθ32cosθ+12sinθ12cosθ232sinθ2cosθ2]=a[122tanθ3+tanθ+32tanθ2]AΔAPM=12×PM×3a2=3a24[122tanθ3+tanθ+32tanθ2]AAPMQ=2AΔAPM=3a24[14tanθ3+tanθ+3tanθ2]

Commented by ajfour last updated on 15/Jan/18

thank you sir. please view my  way if you haven′t.

thankyousir.pleaseviewmywayifyouhavent.

Commented by mrW2 last updated on 16/Jan/18

Your way is very nice too. I didn′t come  to it.

Yourwayisverynicetoo.Ididntcometoit.

Answered by ajfour last updated on 14/Jan/18

Commented by ajfour last updated on 14/Jan/18

eq. of BP :  y=−(√3)(x−a)  eq. of AP :   y=xtan θ  eq. of AM :  y=xtan (θ+α)                              =xtan ((π/6)+(θ/2))  y_P =−(√3)(x_P −a)=x_P tan θ  ⇒ y_P =((a(√3)tan θ)/((√3)+tan θ))  similarly y_M =((a(√3)tan ((π/6)+(θ/2)))/((√3)+tan ((π/6)+(θ/2))))      =((a(√3))/((√3)(((1−((tan (θ/2))/(√3)))/((1/(√3))+tan (θ/2))))+1))  =((a(√3))/((√3)[(((√3)−tan (θ/2))/(1+(√3)tan (θ/2)))]+1))  =((a(√3)[1+(√3)tan (θ/2)])/4)  reqd. area=2×(a/2)(y_M −y_P )  =((a^2 (√3))/4)[1+(√3)tan (θ/2)−((4tan θ)/((√3)+tan θ))] .

eq.ofBP:y=3(xa)eq.ofAP:y=xtanθeq.ofAM:y=xtan(θ+α)=xtan(π6+θ2)yP=3(xPa)=xPtanθyP=a3tanθ3+tanθsimilarlyyM=a3tan(π6+θ2)3+tan(π6+θ2)=a33(1tan(θ/2)313+tanθ2)+1=a33[3tan(θ/2)1+3tan(θ/2)]+1=a3[1+3tan(θ/2)]4reqd.area=2×a2(yMyP)=a234[1+3tanθ24tanθ3+tanθ].

Terms of Service

Privacy Policy

Contact: info@tinkutara.com