Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27781 by abdo imad last updated on 14/Jan/18

find the value of F(x)=∫_0 ^(π/2)   ((ln(1+x sin^2 t))/(sin^2 t)) dt knowing that  −1<x<1 .

$${find}\:{the}\:{value}\:{of}\:{F}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{ln}\left(\mathrm{1}+{x}\:{sin}^{\mathrm{2}} {t}\right)}{{sin}^{\mathrm{2}} {t}}\:{dt}\:{knowing}\:{that} \\ $$ $$−\mathrm{1}<{x}<\mathrm{1}\:. \\ $$

Commented byabdo imad last updated on 18/Jan/18

after verifying that  F is derivable on ]−1,1[  F^(,′) (x)= ∫_0 ^(π/2)    ((sin^2 t)/(sin^2 t(1+x sin^2 t)))dt  = ∫_0 ^(π/(2 ))      (dt/(1+x sin^2 t))= ∫_0 ^(π/2)     (dt/(1+x ((1−cos(2t))/2)))  = ∫_0 ^(π/2)        ((2dt)/(2 +x −x cos(2t)))  let use the ch. 2t=θ  F^ (x)= ∫_0 ^π         (dθ/(2+x −x cosθ)) then the ch. tan((θ/2))=t give  F^ (x)=  ∫_0 ^(+∝)       (1/(2+x −x ((1−t^2 )/(1+t^2 ))))  ((2dt)/(1+t^2 ))  = ∫_0 ^(+∝)          ((2dt)/((2+x)(1+t^2 ) −x +xt^2 ))  = ∫_0 ^(+∝)            ((2dt)/(2+x +(2+2x)t^2  −x))= ∫_0 ^(+∝)     (dt/(1+(1+x)t^2 ))   ch. u=(√(1+x))t  = ∫_0 ^(+∝)                (du/((√(1+x))( 1+u^2 ))) = (π/(2(√(1+x))))  ⇒ F(x)= (π/2) ∫_0 ^x   (dt/(√(1+t)))  +λ           F(x)= π(√(1+x))   +λ  and λ  = F(0)−π =−π so  F(x)= π( (√(1+x))  −1)   .

$$\left.{after}\:{verifying}\:{that}\:\:{F}\:{is}\:{derivable}\:{on}\:\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$ $${F}^{,'} \left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{sin}^{\mathrm{2}} {t}}{{sin}^{\mathrm{2}} {t}\left(\mathrm{1}+{x}\:{sin}^{\mathrm{2}} {t}\right)}{dt} \\ $$ $$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}\:}} \:\:\:\:\:\frac{{dt}}{\mathrm{1}+{x}\:{sin}^{\mathrm{2}} {t}}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{x}\:\frac{\mathrm{1}−{cos}\left(\mathrm{2}{t}\right)}{\mathrm{2}}} \\ $$ $$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\:\frac{\mathrm{2}{dt}}{\mathrm{2}\:+{x}\:−{x}\:{cos}\left(\mathrm{2}{t}\right)}\:\:{let}\:{use}\:{the}\:{ch}.\:\mathrm{2}{t}=\theta \\ $$ $${F}^{} \left({x}\right)=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\:\:\:\frac{{d}\theta}{\mathrm{2}+{x}\:−{x}\:{cos}\theta}\:{then}\:{the}\:{ch}.\:{tan}\left(\frac{\theta}{\mathrm{2}}\right)={t}\:{give} \\ $$ $${F}^{} \left({x}\right)=\:\:\int_{\mathrm{0}} ^{+\propto} \:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}+{x}\:−{x}\:\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\:\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$ $$=\:\int_{\mathrm{0}} ^{+\propto} \:\:\:\:\:\:\:\:\:\frac{\mathrm{2}{dt}}{\left(\mathrm{2}+{x}\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\:−{x}\:+{xt}^{\mathrm{2}} } \\ $$ $$=\:\int_{\mathrm{0}} ^{+\propto} \:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{2}{dt}}{\mathrm{2}+{x}\:+\left(\mathrm{2}+\mathrm{2}{x}\right){t}^{\mathrm{2}} \:−{x}}=\:\int_{\mathrm{0}} ^{+\propto} \:\:\:\:\frac{{dt}}{\mathrm{1}+\left(\mathrm{1}+{x}\right){t}^{\mathrm{2}} }\:\:\:{ch}.\:{u}=\sqrt{\mathrm{1}+{x}}{t} \\ $$ $$=\:\int_{\mathrm{0}} ^{+\propto} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{du}}{\sqrt{\mathrm{1}+{x}}\left(\:\mathrm{1}+{u}^{\mathrm{2}} \right)}\:=\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{1}+{x}}} \\ $$ $$\Rightarrow\:{F}\left({x}\right)=\:\frac{\pi}{\mathrm{2}}\:\int_{\mathrm{0}} ^{{x}} \:\:\frac{{dt}}{\sqrt{\mathrm{1}+{t}}}\:\:+\lambda\:\:\:\:\:\:\:\:\: \\ $$ $${F}\left({x}\right)=\:\pi\sqrt{\mathrm{1}+{x}}\:\:\:+\lambda\:\:{and}\:\lambda\:\:=\:{F}\left(\mathrm{0}\right)−\pi\:=−\pi\:{so} \\ $$ $${F}\left({x}\right)=\:\pi\left(\:\sqrt{\mathrm{1}+{x}}\:\:−\mathrm{1}\right)\:\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com