Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 27782 by abdo imad last updated on 14/Jan/18

solve the e.d.     xy^′  +αy  = xe^(−x)   .

$${solve}\:{the}\:{e}.{d}.\:\:\:\:\:{xy}^{'} \:+\alpha{y}\:\:=\:{xe}^{−{x}} \:\:. \\ $$

Commented by abdo imad last updated on 18/Jan/18

if α=0    e  ⇔  xy^′ = x e^(−x) ⇒ y^′  = e^(−x)  ⇒y= ∫ e^(−x) dx +k  y= −e^(−x) +k  if α≠0   h.e          xy^′  +αy=0 ⇔ (y^′ /y)=((−α)/x)  ⇒ln/y/=−α ln/x/+k  ⇒ y=  (λ/(/x/^α ))   (x≠0)   case 1         x>0  ⇒ y = (λ/x^α )  let use m.v.c mehod  y^′ = λ^′  x^(−α)   −α λ x^(−α−1)   (e) ⇔   λ^′  x^(1−α)  −αλ x^(−α)  +αλ x^(−α)   =x e^(−x)   ⇔  λ^′ =  (x/x^(1−α) ) e^(−x)   = x^α  e^(−x)  ⇒ λ = ∫ x^α  e^(−x) dx +c  y=  ((∫ x^α  e^(−x) dx +c)/x^α )  case 2    if  x<0  we folow the same method to find the solution.

$${if}\:\alpha=\mathrm{0}\:\:\:\:{e}\:\:\Leftrightarrow\:\:{xy}^{'} =\:{x}\:{e}^{−{x}} \Rightarrow\:{y}^{'} \:=\:{e}^{−{x}} \:\Rightarrow{y}=\:\int\:{e}^{−{x}} {dx}\:+{k} \\ $$$${y}=\:−{e}^{−{x}} +{k} \\ $$$${if}\:\alpha\neq\mathrm{0}\:\:\:{h}.{e}\:\:\:\:\:\:\:\:\:\:{xy}^{'} \:+\alpha{y}=\mathrm{0}\:\Leftrightarrow\:\frac{{y}^{'} }{{y}}=\frac{−\alpha}{{x}}\:\:\Rightarrow{ln}/{y}/=−\alpha\:{ln}/{x}/+{k} \\ $$$$\Rightarrow\:{y}=\:\:\frac{\lambda}{/{x}/^{\alpha} }\:\:\:\left({x}\neq\mathrm{0}\right)\: \\ $$$${case}\:\mathrm{1}\:\:\:\:\:\:\:\:\:{x}>\mathrm{0}\:\:\Rightarrow\:{y}\:=\:\frac{\lambda}{{x}^{\alpha} }\:\:{let}\:{use}\:{m}.{v}.{c}\:{mehod} \\ $$$${y}^{'} =\:\lambda^{'} \:{x}^{−\alpha} \:\:−\alpha\:\lambda\:{x}^{−\alpha−\mathrm{1}} \\ $$$$\left({e}\right)\:\Leftrightarrow\:\:\:\lambda^{'} \:{x}^{\mathrm{1}−\alpha} \:−\alpha\lambda\:{x}^{−\alpha} \:+\alpha\lambda\:{x}^{−\alpha} \:\:={x}\:{e}^{−{x}} \\ $$$$\Leftrightarrow\:\:\lambda^{'} =\:\:\frac{{x}}{{x}^{\mathrm{1}−\alpha} }\:{e}^{−{x}} \:\:=\:{x}^{\alpha} \:{e}^{−{x}} \:\Rightarrow\:\lambda\:=\:\int\:{x}^{\alpha} \:{e}^{−{x}} {dx}\:+{c} \\ $$$${y}=\:\:\frac{\int\:{x}^{\alpha} \:{e}^{−{x}} {dx}\:+{c}}{{x}^{\alpha} } \\ $$$${case}\:\mathrm{2}\:\:\:\:{if}\:\:{x}<\mathrm{0}\:\:{we}\:{folow}\:{the}\:{same}\:{method}\:{to}\:{find}\:{the}\:{solution}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com