All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 27792 by abdo imad last updated on 14/Jan/18
findlimx−>1∫xx2dtln(t).
Commented byabdo imad last updated on 15/Jan/18
iffcontinuein[a,b]andgintegrablein[a,b]∃c∈]a,b[/ ∫abf(x)g(x)dx=f(c)∫abg(x)dxso∃cx∈]x,x2[/ ∫xx2dtlnt=1lnc∫xx2dx=x2−xlncx=x(x−1)ln(cx)butx−>1⇔cx−>1 solimx−>1∫xx2dtlnt=limcx−>1cx(cx−1)lncx limcx−>11lncxcx−1=1.(wecanconfusexandcxbrcause x∈V(1)andcx∈V(1).
Commented byprakash jain last updated on 16/Jan/18
understoodrestofthesolutionbut WhatisV(1)?isitvicinityof1? PS:therearesymbolsintheapplike →,∞whichyoucanusepress green∫buttononbottomleftcorner.
Commented byabdo imad last updated on 16/Jan/18
x∈V(1)meanthatxissonearfrom 1.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com