All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40830 by math khazana by abdo last updated on 28/Jul/18
find∫2+tan2tdt
Commented by maxmathsup by imad last updated on 31/Jul/18
letI=∫2+tan2tdtchangementtant=2sh(x)⇒t=arctan(2shx)⇒dt=2ch(x)1+2sh2xdxI=∫2+2sh2x2ch(x)1+2sh2xdx=∫2ch2x1+2sh2dx=∫1+ch(2x)1+ch(2x)−1dx=∫ch(2x)+1ch(2x)dx=x+∫dxch(2x)but∫dxch(2x)=∫2dxe2x+e−2x=ex=t∫2t2+t−2dtt=∫2dtt3+1t=∫2tdtt4+1=t2=u∫du1+u2=arctan(u)+c=arctan(t2)+c=actan(e2x)+cbutx=argsh(tant2)=ln(tant2+1+tan2t2))I=argsh(tant2)+arctan({tant2+1+tan2t2}2)+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com