Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 27801 by abdo imad last updated on 14/Jan/18

solve the d.e.  y^′  −2xy =sinx e^x^2   with initial condition  y(o)=1.

$${solve}\:{the}\:{d}.{e}.\:\:{y}^{'} \:−\mathrm{2}{xy}\:={sinx}\:{e}^{{x}^{\mathrm{2}} } \:{with}\:{initial}\:{condition} \\ $$$${y}\left({o}\right)=\mathrm{1}. \\ $$

Commented by abdo imad last updated on 19/Jan/18

he ⇒ y^′ −2xy=0 ⇔   (y^′ /y)=2x  ⇔  ln/y/ = x^2  +k  ⇔  y= λ e^x^2      let use the m.v.c method  y^′ = λ^′  e^x^2   +2λx e^x^2    and  (e) ⇔  λ^′  e^x^2   +2λx e^x^2   −2λx e^x^2  = sinx e^x^2    ⇔ λ^′  =sinx  ⇔   λ = ∫sinxdx +k =−cosx +k and  y(x)= (−cosx +k)e^x^2    y(0)=1 ⇒k−1=1 ⇒k=2  finally   y(x)= (2−cosx)e^x^2    .

$${he}\:\Rightarrow\:{y}^{'} −\mathrm{2}{xy}=\mathrm{0}\:\Leftrightarrow\:\:\:\frac{{y}^{'} }{{y}}=\mathrm{2}{x}\:\:\Leftrightarrow\:\:{ln}/{y}/\:=\:{x}^{\mathrm{2}} \:+{k} \\ $$$$\Leftrightarrow\:\:{y}=\:\lambda\:{e}^{{x}^{\mathrm{2}} } \:\:\:\:{let}\:{use}\:{the}\:{m}.{v}.{c}\:{method} \\ $$$${y}^{'} =\:\lambda^{'} \:{e}^{{x}^{\mathrm{2}} } \:+\mathrm{2}\lambda{x}\:{e}^{{x}^{\mathrm{2}} } \\ $$$${and}\:\:\left({e}\right)\:\Leftrightarrow\:\:\lambda^{'} \:{e}^{{x}^{\mathrm{2}} } \:+\mathrm{2}\lambda{x}\:{e}^{{x}^{\mathrm{2}} } \:−\mathrm{2}\lambda{x}\:{e}^{{x}^{\mathrm{2}} } =\:{sinx}\:{e}^{{x}^{\mathrm{2}} } \\ $$$$\Leftrightarrow\:\lambda^{'} \:={sinx}\:\:\Leftrightarrow\:\:\:\lambda\:=\:\int{sinxdx}\:+{k}\:=−{cosx}\:+{k}\:{and} \\ $$$${y}\left({x}\right)=\:\left(−{cosx}\:+{k}\right){e}^{{x}^{\mathrm{2}} } \:\:{y}\left(\mathrm{0}\right)=\mathrm{1}\:\Rightarrow{k}−\mathrm{1}=\mathrm{1}\:\Rightarrow{k}=\mathrm{2} \\ $$$${finally}\:\:\:{y}\left({x}\right)=\:\left(\mathrm{2}−{cosx}\right){e}^{{x}^{\mathrm{2}} } \:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com