Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27804 by abdo imad last updated on 15/Jan/18

calculate  ∫_0 ^∝   ((e^(−ax)  − e^(−bx) )/x^2 )dx  with a>0  b>o

$${calculate}\:\:\int_{\mathrm{0}} ^{\propto} \:\:\frac{{e}^{−{ax}} \:−\:{e}^{−{bx}} }{{x}^{\mathrm{2}} }{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$ $${b}>{o} \\ $$

Commented byabdo imad last updated on 17/Jan/18

let put  I= ∫_0 ^∞    ((e^(−ax)   −e^(−bx) )/x^2 )dx  we have  lim_(x→0 )    ((e^(−ax)  −e^(−bx) )/x^2 ) =lim_(x→0  )    ((−a e^(−ax)  +b e^(−bx) )/(2x))  =lim_(x→o)   ((a^2  e^(−ax)  −b^2 e^(−bx) )/2)= ((a^2 −b^2 )/2) for another side    lim_(x→+∝)  x^2  ((e^(−ax) −e^(−bx) )/x^2 ) =0  so the integral converges  let integrate by parts  u^′ =(1/x^2 )  and v= e^(−ax) −e^(−bx)   I=[ −(1/x)( e^(−ax)  − e^(−bx) )]_0 ^(+∝)  − ∫_0 ^∞ −(1/x) ( −a e^(−ax)  +b e^(−bx) )dx  = b−a    + ∫_0 ^∞    ((b e^(−bx) −a e^(−ax) )/x)dx  let introduce  f(t) = ∫_0 ^∞   ((b e^(−bx)  −a e^(−ax) )/x) e^(−tx)  dx  with  t≥0  f^′ (t)=  −∫_0 ^∞ ( b e^(−bx)  −a e^(−ax) ) e^(−tx)   = a∫_0 ^∞   e^(−( t+a)x) dx  −b∫_0 ^∞   e^(−(t+b)x) dx   but    ∫_0 ^∞   e^(−(t+a)x) dx=[ ((−1)/(t+a)) e^(−(t+a)x) ]_0 ^(+∝)   =  (1/(t+a)) and by same  manner  ∫_0 ^∞   e^(−(t+b)x) dx=  (1/(t+b))  f^′ (t)= (a/(t+a)) − (b/(t+b))  ⇒ f(t)= aln/t+a/  −b ln/t+b/ +λ  λ= lim_(t→+∝) (f(t) −aln/t+a/−bln/t+b/)=0  so  f(t) =  aln/t+a/ −bln/t+b/ but t≥0  and a>0 and b>0  f(t)= aln(t+a) −bln(t+b) and  ∫_0 ^∞     ((b e^(−bx)  − a e^(−ax) )/x)dx=f(0)= aln(a)−b lnb  finally  I = b−a  +aln(a) −b ln(b)  .

$${let}\:{put}\:\:{I}=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{ax}} \:\:−{e}^{−{bx}} }{{x}^{\mathrm{2}} }{dx}\:\:{we}\:{have} \\ $$ $${lim}_{{x}\rightarrow\mathrm{0}\:} \:\:\:\frac{{e}^{−{ax}} \:−{e}^{−{bx}} }{{x}^{\mathrm{2}} }\:={lim}_{{x}\rightarrow\mathrm{0}\:\:} \:\:\:\frac{−{a}\:{e}^{−{ax}} \:+{b}\:{e}^{−{bx}} }{\mathrm{2}{x}} \\ $$ $$={lim}_{{x}\rightarrow{o}} \:\:\frac{{a}^{\mathrm{2}} \:{e}^{−{ax}} \:−{b}^{\mathrm{2}} {e}^{−{bx}} }{\mathrm{2}}=\:\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}}\:{for}\:{another}\:{side} \\ $$ $$ \\ $$ $${lim}_{{x}\rightarrow+\propto} \:{x}^{\mathrm{2}} \:\frac{{e}^{−{ax}} −{e}^{−{bx}} }{{x}^{\mathrm{2}} }\:=\mathrm{0}\:\:{so}\:{the}\:{integral}\:{converges} \\ $$ $${let}\:{integrate}\:{by}\:{parts}\:\:{u}^{'} =\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\:{and}\:{v}=\:{e}^{−{ax}} −{e}^{−{bx}} \\ $$ $${I}=\left[\:−\frac{\mathrm{1}}{{x}}\left(\:{e}^{−{ax}} \:−\:{e}^{−{bx}} \right)\right]_{\mathrm{0}} ^{+\propto} \:−\:\int_{\mathrm{0}} ^{\infty} −\frac{\mathrm{1}}{{x}}\:\left(\:−{a}\:{e}^{−{ax}} \:+{b}\:{e}^{−{bx}} \right){dx} \\ $$ $$=\:{b}−{a}\:\:\:\:+\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{b}\:{e}^{−{bx}} −{a}\:{e}^{−{ax}} }{{x}}{dx}\:\:{let}\:{introduce} \\ $$ $${f}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{b}\:{e}^{−{bx}} \:−{a}\:{e}^{−{ax}} }{{x}}\:{e}^{−{tx}} \:{dx}\:\:{with}\:\:{t}\geqslant\mathrm{0} \\ $$ $${f}^{'} \left({t}\right)=\:\:−\int_{\mathrm{0}} ^{\infty} \left(\:{b}\:{e}^{−{bx}} \:−{a}\:{e}^{−{ax}} \right)\:{e}^{−{tx}} \\ $$ $$=\:{a}\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\:{t}+{a}\right){x}} {dx}\:\:−{b}\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({t}+{b}\right){x}} {dx}\:\:\:{but} \\ $$ $$\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({t}+{a}\right){x}} {dx}=\left[\:\frac{−\mathrm{1}}{{t}+{a}}\:{e}^{−\left({t}+{a}\right){x}} \right]_{\mathrm{0}} ^{+\propto} \:\:=\:\:\frac{\mathrm{1}}{{t}+{a}}\:{and}\:{by}\:{same} \\ $$ $${manner}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({t}+{b}\right){x}} {dx}=\:\:\frac{\mathrm{1}}{{t}+{b}} \\ $$ $${f}^{'} \left({t}\right)=\:\frac{{a}}{{t}+{a}}\:−\:\frac{{b}}{{t}+{b}}\:\:\Rightarrow\:{f}\left({t}\right)=\:{aln}/{t}+{a}/\:\:−{b}\:{ln}/{t}+{b}/\:+\lambda \\ $$ $$\lambda=\:{lim}_{{t}\rightarrow+\propto} \left({f}\left({t}\right)\:−{aln}/{t}+{a}/−{bln}/{t}+{b}/\right)=\mathrm{0} \\ $$ $${so}\:\:{f}\left({t}\right)\:=\:\:{aln}/{t}+{a}/\:−{bln}/{t}+{b}/\:{but}\:{t}\geqslant\mathrm{0}\:\:{and}\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$ $${f}\left({t}\right)=\:{aln}\left({t}+{a}\right)\:−{bln}\left({t}+{b}\right)\:{and} \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{b}\:{e}^{−{bx}} \:−\:{a}\:{e}^{−{ax}} }{{x}}{dx}={f}\left(\mathrm{0}\right)=\:{aln}\left({a}\right)−{b}\:{lnb}\:\:{finally} \\ $$ $${I}\:=\:{b}−{a}\:\:+{aln}\left({a}\right)\:−{b}\:{ln}\left({b}\right)\:\:. \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com