All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27805 by abdo imad last updated on 15/Jan/18
find∫1∝arctan(αx)x2.
Commented by abdo imad last updated on 16/Jan/18
letputI=∫1∝arctan(αx)x2dxintegrateperpartsI=[−1xarctan(αx)]1+∝−∫1+∝−1xα1+α2x2dxI=artan(α)+α∫1+∝dxx(1+α2x2)weusethech.x=1αt∫1+∝dxx(1+α2x2)=∫α+∝1αdt1αt(1+t2)=∫α+∝dtt(1+t2)but1t(1+t2)=1t−t1+t2⇒∫dtt(1+t2)=ln/t/−12ln(1+t2)+k=ln/t1+t2/so∫α+∝dtt(1+t2)=[ln/t1+t2/]α+∝=−ln/α1+α2/I=artan(α)−αln/α1+α2/.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com