Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 27816 by Rasheed.Sindhi last updated on 15/Jan/18

If N is perfect nth power, prove that         n ∣ (d(N)−1)   [Where d(N) denotes number  of divisors of N]  Also show by an example that its  vice versa is not necessarily correct.

$$\mathrm{If}\:\mathrm{N}\:\mathrm{is}\:\boldsymbol{\mathrm{perfect}}\:\boldsymbol{\mathrm{nth}}\:\boldsymbol{\mathrm{power}},\:\mathrm{prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\mathrm{n}\:\mid\:\left(\mathrm{d}\left(\mathrm{N}\right)−\mathrm{1}\right)\: \\ $$$$\left[{Where}\:\mathrm{d}\left(\mathrm{N}\right)\:{denotes}\:\boldsymbol{{number}}\right. \\ $$$$\left.\boldsymbol{{of}}\:\boldsymbol{{divisors}}\:\boldsymbol{{of}}\:\mathrm{N}\right] \\ $$$$\mathrm{Also}\:\mathrm{show}\:\mathrm{by}\:\mathrm{an}\:\mathrm{example}\:\mathrm{that}\:\mathrm{its} \\ $$$$\mathrm{vice}\:\mathrm{versa}\:\mathrm{is}\:\mathrm{not}\:\mathrm{necessarily}\:\mathrm{correct}. \\ $$

Commented by Rasheed.Sindhi last updated on 16/Jan/18

Generalization ofQ#27767

$$\mathrm{Generalization}\:\mathrm{ofQ}#\mathrm{27767} \\ $$

Answered by mrW2 last updated on 15/Jan/18

N=a^n   a=Π_(i=1) ^k p_i ^e_i    N=a^n =Π_(i=1) ^k p^(ne_i )   d(N)=Π_(i=1) ^k (ne_i +1)=(ne_1 +1)Π_(i=2) ^k (ne_i +1)=ne_1 Π_(i=2) ^k (ne_i +1)+Π_(i=2) ^k (ne_i +1)  d(N) mod n=[Π_(i=1) ^k (ne_i +1)] mod n=[Π_(i=2) ^k (ne_i +1)] mod n=[Π_(i=3) ^k (ne_i +1)] mod n=...=(ne_k +1) mod n=1  ⇒n ∣ [d(N)−1]    let′s look at N=48=2^4 ×3^1   d(N)=5×2=10  d(N)−1=9 mod 3=0  but N is not a perfect 3rd power, since  there is no integer a with a^3 =48.

$$\mathrm{N}={a}^{{n}} \\ $$$${a}=\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}{p}_{{i}} ^{{e}_{{i}} } \\ $$$$\mathrm{N}={a}^{{n}} =\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}{p}^{{ne}_{{i}} } \\ $$$${d}\left({N}\right)=\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}\left({ne}_{{i}} +\mathrm{1}\right)=\left({ne}_{\mathrm{1}} +\mathrm{1}\right)\underset{{i}=\mathrm{2}} {\overset{{k}} {\prod}}\left({ne}_{{i}} +\mathrm{1}\right)={ne}_{\mathrm{1}} \underset{{i}=\mathrm{2}} {\overset{{k}} {\prod}}\left({ne}_{{i}} +\mathrm{1}\right)+\underset{{i}=\mathrm{2}} {\overset{{k}} {\prod}}\left({ne}_{{i}} +\mathrm{1}\right) \\ $$$${d}\left({N}\right)\:{mod}\:{n}=\left[\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}\left({ne}_{{i}} +\mathrm{1}\right)\right]\:{mod}\:{n}=\left[\underset{{i}=\mathrm{2}} {\overset{{k}} {\prod}}\left({ne}_{{i}} +\mathrm{1}\right)\right]\:{mod}\:{n}=\left[\underset{{i}=\mathrm{3}} {\overset{{k}} {\prod}}\left({ne}_{{i}} +\mathrm{1}\right)\right]\:{mod}\:{n}=...=\left({ne}_{{k}} +\mathrm{1}\right)\:{mod}\:{n}=\mathrm{1} \\ $$$$\Rightarrow{n}\:\mid\:\left[{d}\left({N}\right)−\mathrm{1}\right] \\ $$$$ \\ $$$${let}'{s}\:{look}\:{at}\:{N}=\mathrm{48}=\mathrm{2}^{\mathrm{4}} ×\mathrm{3}^{\mathrm{1}} \\ $$$${d}\left({N}\right)=\mathrm{5}×\mathrm{2}=\mathrm{10} \\ $$$${d}\left({N}\right)−\mathrm{1}=\mathrm{9}\:{mod}\:\mathrm{3}=\mathrm{0} \\ $$$${but}\:{N}\:{is}\:{not}\:{a}\:{perfect}\:\mathrm{3}{rd}\:{power},\:{since} \\ $$$${there}\:{is}\:{no}\:{integer}\:{a}\:{with}\:{a}^{\mathrm{3}} =\mathrm{48}. \\ $$

Commented by Rasheed.Sindhi last updated on 16/Jan/18

e^x cellent Sir!

$$\mathrm{e}^{\mathrm{x}} \mathrm{cellent}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com