Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 27818 by ajfour last updated on 15/Jan/18

Commented by ajfour last updated on 15/Jan/18

If y=Ax^2  is reflected in the line  (x/a)+(y/b)=1 , find equation of its  reflection f(x,y)=0 .

$${If}\:{y}={Ax}^{\mathrm{2}} \:{is}\:{reflected}\:{in}\:{the}\:{line} \\ $$$$\frac{{x}}{{a}}+\frac{{y}}{{b}}=\mathrm{1}\:,\:{find}\:{equation}\:{of}\:{its} \\ $$$${reflection}\:{f}\left({x},{y}\right)=\mathrm{0}\:. \\ $$

Commented by mrW2 last updated on 15/Jan/18

let′s say point A(p,q) is reflected in  line (x/a)+(y/b)=1 and its mirrored image  is point C(u,v).  let′s say B is a point on the line with  AB⊥to the line.    Eqn. of AB is  (x,y)=(p,r)+λ((1/a),(1/b))  or  x=p+(λ/a)  y=q+(λ/b)  point B is on the line:  (1/a)(p+(λ_B /a))+(1/b)(q+(λ_B /b))=1  λ_B ((1/a^2 )+(1/b^2 ))=1−((p/a)+(q/b))  λ_B (((a^2 +b^2 )/(ab)))=ab−(aq+bp)  ⇒λ_B =((ab(ab−aq−bp))/(a^2 +b^2 ))  since C is mirrored image of A,  λ_C =2λ_B =((2ab(ab−aq−bp))/(a^2 +b^2 ))  ⇒u=p+(λ_C /a)=p+((2b(ab−aq−bp))/(a^2 +b^2 ))=((a^2 −b^2 )/(a^2 +b^2 )) p−((2ab)/(a^2 +b^2 )) q+((2ab^2 )/(a^2 +b^2 ))=cp+dq−db  ⇒v=q+(λ_C /b)=q+((2a(ab−aq−bp))/(a^2 +b^2 ))=−((2ab)/(a^2 +b^2 )) p+((b^2 −a^2 )/(a^2 +b^2 )) q+((2a^2 b)/(a^2 +b^2 ))=dp−cq−da  with c=((a^2 −b^2 )/(a^2 +b^2 )) and d=−((2ab)/(a^2 +b^2 ))    now we have (u,v) on the curve y=Ax^2   ⇒v=Au^2   dp−cq−da=A(cp+dq−db)^2 =A(c^2 p^2 +2cdpq+d^2 q^2 +d^2 b^2 −2dbcp−2d^2 bq)  Ac^2 p^2 +Ad^2 q^2 +2Acdpq+Ad^2 b^2 −2Adbcp−2Ad^2 bq−dp+cq+da=0  Ac^2 p^2 +Ad^2 q^2 +2Acdpq−d(1+2Abc)p−(2Abd^2 −c)q+d(a+Adb^2 )=0  or  Ac^2 x^2 +Ad^2 y^2 +2Acdxy−d(1+2Abc)x−(2Abd^2 −c)y+d(a+Adb^2 )=0  ((A(a^2 −b^2 )^2 )/(a^2 +b^2 ))x^2 +((4Aa^2 b^2 )/(a^2 +b^2 ))y^2 −((4Aab(a^2 −b^2 ))/(a^2 +b^2 ))xy+2ab(1+((2Ab(a^2 −b^2 ))/(a^2 +b^2 )))x−(((8Aa^2 b^3 )/(a^2 +b^2 ))−a^2 +b^2 )y−2ab(a−((2Aab^3 )/(a^2 +b^2 )))=0  ⇒f(x,y)=A(a^2 −b^2 )^2 x^2 +4Aa^2 b^2 y^2 −4Aab(a^2 −b^2 )xy+2ab(a^2 +b^2 +2Aa^2 b−2Ab^3 )x−(8Aa^2 b^3 −a^4 +b^4 )y−2ab(a^3 +ab^2 −2Aab^3 )=0

$${let}'{s}\:{say}\:{point}\:{A}\left({p},{q}\right)\:{is}\:{reflected}\:{in} \\ $$$${line}\:\frac{{x}}{{a}}+\frac{{y}}{{b}}=\mathrm{1}\:{and}\:{its}\:{mirrored}\:{image} \\ $$$${is}\:{point}\:{C}\left({u},{v}\right). \\ $$$${let}'{s}\:{say}\:{B}\:{is}\:{a}\:{point}\:{on}\:{the}\:{line}\:{with} \\ $$$${AB}\bot{to}\:{the}\:{line}. \\ $$$$ \\ $$$${Eqn}.\:{of}\:{AB}\:{is} \\ $$$$\left({x},{y}\right)=\left({p},{r}\right)+\lambda\left(\frac{\mathrm{1}}{{a}},\frac{\mathrm{1}}{{b}}\right) \\ $$$${or} \\ $$$${x}={p}+\frac{\lambda}{{a}} \\ $$$${y}={q}+\frac{\lambda}{{b}} \\ $$$${point}\:{B}\:{is}\:{on}\:{the}\:{line}: \\ $$$$\frac{\mathrm{1}}{{a}}\left({p}+\frac{\lambda_{{B}} }{{a}}\right)+\frac{\mathrm{1}}{{b}}\left({q}+\frac{\lambda_{{B}} }{{b}}\right)=\mathrm{1} \\ $$$$\lambda_{{B}} \left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\right)=\mathrm{1}−\left(\frac{{p}}{{a}}+\frac{{q}}{{b}}\right) \\ $$$$\lambda_{{B}} \left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{ab}}\right)={ab}−\left({aq}+{bp}\right) \\ $$$$\Rightarrow\lambda_{{B}} =\frac{{ab}\left({ab}−{aq}−{bp}\right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${since}\:{C}\:{is}\:{mirrored}\:{image}\:{of}\:{A}, \\ $$$$\lambda_{{C}} =\mathrm{2}\lambda_{{B}} =\frac{\mathrm{2}{ab}\left({ab}−{aq}−{bp}\right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{u}={p}+\frac{\lambda_{{C}} }{{a}}={p}+\frac{\mathrm{2}{b}\left({ab}−{aq}−{bp}\right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:{p}−\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:{q}+\frac{\mathrm{2}{ab}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }={cp}+{dq}−{db} \\ $$$$\Rightarrow{v}={q}+\frac{\lambda_{{C}} }{{b}}={q}+\frac{\mathrm{2}{a}\left({ab}−{aq}−{bp}\right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }=−\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:{p}+\frac{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:{q}+\frac{\mathrm{2}{a}^{\mathrm{2}} {b}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }={dp}−{cq}−{da} \\ $$$${with}\:{c}=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:{and}\:{d}=−\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$ \\ $$$${now}\:{we}\:{have}\:\left({u},{v}\right)\:{on}\:{the}\:{curve}\:{y}={Ax}^{\mathrm{2}} \\ $$$$\Rightarrow{v}={Au}^{\mathrm{2}} \\ $$$${dp}−{cq}−{da}={A}\left({cp}+{dq}−{db}\right)^{\mathrm{2}} ={A}\left({c}^{\mathrm{2}} {p}^{\mathrm{2}} +\mathrm{2}{cdpq}+{d}^{\mathrm{2}} {q}^{\mathrm{2}} +{d}^{\mathrm{2}} {b}^{\mathrm{2}} −\mathrm{2}{dbcp}−\mathrm{2}{d}^{\mathrm{2}} {bq}\right) \\ $$$${Ac}^{\mathrm{2}} {p}^{\mathrm{2}} +{Ad}^{\mathrm{2}} {q}^{\mathrm{2}} +\mathrm{2}{Acdpq}+{Ad}^{\mathrm{2}} {b}^{\mathrm{2}} −\mathrm{2}{Adbcp}−\mathrm{2}{Ad}^{\mathrm{2}} {bq}−{dp}+{cq}+{da}=\mathrm{0} \\ $$$${Ac}^{\mathrm{2}} {p}^{\mathrm{2}} +{Ad}^{\mathrm{2}} {q}^{\mathrm{2}} +\mathrm{2}{Acdpq}−{d}\left(\mathrm{1}+\mathrm{2}{Abc}\right){p}−\left(\mathrm{2}{Abd}^{\mathrm{2}} −{c}\right){q}+{d}\left({a}+{Adb}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${or} \\ $$$${Ac}^{\mathrm{2}} {x}^{\mathrm{2}} +{Ad}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{2}{Acdxy}−{d}\left(\mathrm{1}+\mathrm{2}{Abc}\right){x}−\left(\mathrm{2}{Abd}^{\mathrm{2}} −{c}\right){y}+{d}\left({a}+{Adb}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\frac{{A}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{x}^{\mathrm{2}} +\frac{\mathrm{4}{Aa}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{y}^{\mathrm{2}} −\frac{\mathrm{4}{Aab}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{xy}+\mathrm{2}{ab}\left(\mathrm{1}+\frac{\mathrm{2}{Ab}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right){x}−\left(\frac{\mathrm{8}{Aa}^{\mathrm{2}} {b}^{\mathrm{3}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){y}−\mathrm{2}{ab}\left({a}−\frac{\mathrm{2}{Aab}^{\mathrm{3}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right)=\mathrm{0} \\ $$$$\Rightarrow{f}\left({x},{y}\right)={A}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{4}{Aa}^{\mathrm{2}} {b}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{4}{Aab}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){xy}+\mathrm{2}{ab}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{Aa}^{\mathrm{2}} {b}−\mathrm{2}{Ab}^{\mathrm{3}} \right){x}−\left(\mathrm{8}{Aa}^{\mathrm{2}} {b}^{\mathrm{3}} −{a}^{\mathrm{4}} +{b}^{\mathrm{4}} \right){y}−\mathrm{2}{ab}\left({a}^{\mathrm{3}} +{ab}^{\mathrm{2}} −\mathrm{2}{Aab}^{\mathrm{3}} \right)=\mathrm{0} \\ $$

Commented by mrW2 last updated on 15/Jan/18

Commented by ajfour last updated on 15/Jan/18

Great Sir!this is truly amazing.  i shall try to follow, might take a while.

$${Great}\:{Sir}!{this}\:{is}\:{truly}\:{amazing}. \\ $$$${i}\:{shall}\:{try}\:{to}\:{follow},\:{might}\:{take}\:{a}\:{while}. \\ $$

Commented by mrW2 last updated on 15/Jan/18

Commented by mrW2 last updated on 15/Jan/18

This is also a good way in current case,  because the curve to reflect is a   symmetric figure. If the figure is  not symmetric, e.g. if y=e^x , you can  not obtain the mirrored function  through such a rotation.

$${This}\:{is}\:{also}\:{a}\:{good}\:{way}\:{in}\:{current}\:{case}, \\ $$$${because}\:{the}\:{curve}\:{to}\:{reflect}\:{is}\:{a}\: \\ $$$${symmetric}\:{figure}.\:{If}\:{the}\:{figure}\:{is} \\ $$$${not}\:{symmetric},\:{e}.{g}.\:{if}\:{y}={e}^{{x}} ,\:{you}\:{can} \\ $$$${not}\:{obtain}\:{the}\:{mirrored}\:{function} \\ $$$${through}\:{such}\:{a}\:{rotation}. \\ $$

Commented by mrW2 last updated on 16/Jan/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com