Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 27820 by bmind4860 last updated on 15/Jan/18

If A,Bε(0,(π/2)) such that 3sin^2 A+2sin^2 B=1  and 3sin2A−2sin2B=0, find the value of A+B.

$${If}\:{A},{B}\epsilon\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right)\:{such}\:{that}\:\mathrm{3}{sin}^{\mathrm{2}} {A}+\mathrm{2}{sin}^{\mathrm{2}} {B}=\mathrm{1} \\ $$$${and}\:\mathrm{3}{sin}\mathrm{2}{A}−\mathrm{2}{sin}\mathrm{2}{B}=\mathrm{0},\:{find}\:{the}\:{value}\:{of}\:{A}+{B}. \\ $$

Answered by ajfour last updated on 15/Jan/18

(3/2)(1−cos 2A)+1−cos 2B=1  ⇒ 3cos 2A+2cos 2B=3   ....(i)  and  since  3sin 2A=2sin 2B  9sin^2 2A=4sin^2 2B  ⇒  9−9cos^2 2A=4−4cos^2 2B  ⇒ 9cos^2 2A−4cos^2 2B=5  or  (3cos 2A−2cos 2B)(3cos 2A+2cos 2B)=5  using (i):  3cos 2A−2cos 2B=(5/3)  and as   3cos 2A+2cos 2B=3  adding the above two eqs.  6cos 2A=((14)/3)  ⇒  cos 2A=(7/9)       and  sin 2A=(√(1−((49)/(81)))) =((4(√2))/9)  subtracting them,  4cos 2B=(4/3)  ⇒   cos 2B=(1/3)      and  sin 2B=(√(1−(1/9))) =((2(√2))/3)  cos (2A+2B)=cos 2Acos 2B                                       −sin 2Asin 2B       =(7/9)×(1/3)−((4(√2))/9)×((2(√2))/3)     =−(1/3)  cos (A+B)=(√((1+cos (2A+2B))/2))        =(1/(√3))  A+B=cos^(−1) ((1/(√3))).

$$\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}{A}\right)+\mathrm{1}−\mathrm{cos}\:\mathrm{2}{B}=\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{3cos}\:\mathrm{2}{A}+\mathrm{2cos}\:\mathrm{2}{B}=\mathrm{3}\:\:\:....\left({i}\right) \\ $$$${and}\:\:{since}\:\:\mathrm{3sin}\:\mathrm{2}{A}=\mathrm{2sin}\:\mathrm{2}{B} \\ $$$$\mathrm{9sin}\:^{\mathrm{2}} \mathrm{2}{A}=\mathrm{4sin}\:^{\mathrm{2}} \mathrm{2}{B} \\ $$$$\Rightarrow\:\:\mathrm{9}−\mathrm{9cos}\:^{\mathrm{2}} \mathrm{2}{A}=\mathrm{4}−\mathrm{4cos}\:^{\mathrm{2}} \mathrm{2}{B} \\ $$$$\Rightarrow\:\mathrm{9cos}\:^{\mathrm{2}} \mathrm{2}{A}−\mathrm{4cos}\:^{\mathrm{2}} \mathrm{2}{B}=\mathrm{5} \\ $$$${or}\:\:\left(\mathrm{3cos}\:\mathrm{2}{A}−\mathrm{2cos}\:\mathrm{2}{B}\right)\left(\mathrm{3cos}\:\mathrm{2}{A}+\mathrm{2cos}\:\mathrm{2}{B}\right)=\mathrm{5} \\ $$$${using}\:\left({i}\right): \\ $$$$\mathrm{3cos}\:\mathrm{2}{A}−\mathrm{2cos}\:\mathrm{2}{B}=\frac{\mathrm{5}}{\mathrm{3}} \\ $$$${and}\:{as}\:\:\:\mathrm{3cos}\:\mathrm{2}{A}+\mathrm{2cos}\:\mathrm{2}{B}=\mathrm{3} \\ $$$${adding}\:{the}\:{above}\:{two}\:{eqs}. \\ $$$$\mathrm{6cos}\:\mathrm{2}{A}=\frac{\mathrm{14}}{\mathrm{3}}\:\:\Rightarrow\:\:\mathrm{cos}\:\mathrm{2}{A}=\frac{\mathrm{7}}{\mathrm{9}} \\ $$$$\:\:\:\:\:{and}\:\:\mathrm{sin}\:\mathrm{2}{A}=\sqrt{\mathrm{1}−\frac{\mathrm{49}}{\mathrm{81}}}\:=\frac{\mathrm{4}\sqrt{\mathrm{2}}}{\mathrm{9}} \\ $$$${subtracting}\:{them}, \\ $$$$\mathrm{4cos}\:\mathrm{2}{B}=\frac{\mathrm{4}}{\mathrm{3}}\:\:\Rightarrow\:\:\:\mathrm{cos}\:\mathrm{2}{B}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\:\:\:{and}\:\:\mathrm{sin}\:\mathrm{2}{B}=\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{9}}}\:=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$$$\mathrm{cos}\:\left(\mathrm{2}{A}+\mathrm{2}{B}\right)=\mathrm{cos}\:\mathrm{2}{A}\mathrm{cos}\:\mathrm{2}{B} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{sin}\:\mathrm{2}{A}\mathrm{sin}\:\mathrm{2}{B} \\ $$$$\:\:\:\:\:=\frac{\mathrm{7}}{\mathrm{9}}×\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{4}\sqrt{\mathrm{2}}}{\mathrm{9}}×\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$$$\:\:\:=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{cos}\:\left({A}+{B}\right)=\sqrt{\frac{\mathrm{1}+\mathrm{cos}\:\left(\mathrm{2}{A}+\mathrm{2}{B}\right)}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$$${A}+{B}=\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\right). \\ $$

Commented by bmind4860 last updated on 15/Jan/18

perfect

$${perfect} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com