All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 27820 by bmind4860 last updated on 15/Jan/18
IfA,Bϵ(0,π2)suchthat3sin2A+2sin2B=1and3sin2A−2sin2B=0,findthevalueofA+B.
Answered by ajfour last updated on 15/Jan/18
32(1−cos2A)+1−cos2B=1⇒3cos2A+2cos2B=3....(i)andsince3sin2A=2sin2B9sin22A=4sin22B⇒9−9cos22A=4−4cos22B⇒9cos22A−4cos22B=5or(3cos2A−2cos2B)(3cos2A+2cos2B)=5using(i):3cos2A−2cos2B=53andas3cos2A+2cos2B=3addingtheabovetwoeqs.6cos2A=143⇒cos2A=79andsin2A=1−4981=429subtractingthem,4cos2B=43⇒cos2B=13andsin2B=1−19=223cos(2A+2B)=cos2Acos2B−sin2Asin2B=79×13−429×223=−13cos(A+B)=1+cos(2A+2B)2=13A+B=cos−1(13).
Commented by bmind4860 last updated on 15/Jan/18
perfect
Terms of Service
Privacy Policy
Contact: info@tinkutara.com