All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27828 by abdo imad last updated on 15/Jan/18
findthevalueof∫0π2tanxdx.
Commented by NECx last updated on 15/Jan/18
thanksforthisquestion.Ireallyneedtheanswer.
Commented by abdo imad last updated on 15/Jan/18
letusethech.tanx=t⇔tanx=t2⇔x=arctan(t2)I=∫0π2tanxdx=∫0∞t2t1+t4dt=∫0∝2t21+t4dt=12∫−∝+∝2t21+t4dtletintroducethecomplexfunctionf(z)=2z21+z4letfindthepolesoff?1+z4=0⇔z4=ei(2k+1)πsothepolesarezk=ei(2k+1)π4andk∈[[0,3]]wehavez0=eiπ4,z1=ei3π4,z2=ei5π4z3=ei7π4and∫Rf(z)dz=2iπ(Res(f,z0)+Res(f,z1))Res(f,z0)=2z024z03=12z0−1=12e−iπ4Res(f,z1)=2z124z13=12z1−1=−12e−i3π4=12e−i(π−π4)=−12eiπ4∫Rf(z)dz=2iπ[12(e−iπ4−eiπ4)]=iπ(−2isin(π4))=2π22=π2⇒I=12∫Rf(z)dz=π22.
Answered by ajfour last updated on 15/Jan/18
lettanx=t⇒dx=2tdt1+t4∫0π/2tanxdx=∫0∞2t2dt1+t4=∫0∞2dt(1t2+t2)=∫0∞(1−1t2)dt(t+1t)2−2+∫0∞(1+1t2)dt(t−1t)2+2=122ln(t+1t−2t+1t+2)∣0∞+12tan−1(t−1t2)∣0∞=0+12(π2+π2)=π2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com