Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27828 by abdo imad last updated on 15/Jan/18

find the value of   ∫_0 ^(π/2) (√(tanx))dx .

findthevalueof0π2tanxdx.

Commented by NECx last updated on 15/Jan/18

thanks for this question.  I really need the answer.

thanksforthisquestion.Ireallyneedtheanswer.

Commented by abdo imad last updated on 15/Jan/18

let use the ch.  (√(tanx))=t ⇔  tanx=t^2   ⇔ x= arctan (t^2 )  I= ∫_0 ^(π/2) (√(tanx))dx= ∫_0 ^∞  t ((2t)/(1+t^4 )) dt  =∫_0 ^∝    ((2t^2 )/(1+t^4 ))dt  = (1/2) ∫_(−∝) ^(+∝)    ((2t^2 )/(1+t^4 ))dt   let introduce the complex function  f(z)= ((2z^2 )/(1+z^4 ))  let find the poles of f?  1+z^4 =0⇔  z^4 = e^(i(2k+1)π)  so the poles are z_(k ) = e^(i(2k+1)(π/4))   and k∈[[0,3]] we have z_0 = e^(i(π/4)) ,  z_1 = e^(i((3π)/4))   , z_2 = e^(i((5π)/4))   z_3 = e^(i((7π)/4))   and ∫_R^    f(z)dz= 2iπ( Res(f,z_0 ) +Res(f,z_1  ))  Res(f ,z_0 )=  ((2z_0 ^2 )/(4z_0 ^3 ))= (1/2) z_0 ^(−1) =(1/2) e^(−i(π/4))   Res(f,z_1 )= ((2z_1 ^2 )/(4z_1 ^3 ))=(1/2) z_1 ^(−1) =−(1/2) e^(−i((3π)/4)) =(1/2) e^(−i(π−(π/4)))   = −(1/2) e^(i(π/4))   ∫_R  f(z)dz=2iπ[ (1/2)( e^(−i(π/4)) −e^(i(π/4)) )]=iπ(−2i sin((π/4)))  =2π ((√2)/2) =π(√2)⇒  I= (1/2) ∫_R  f(z)dz= ((π(√2))/2)  .

letusethech.tanx=ttanx=t2x=arctan(t2)I=0π2tanxdx=0t2t1+t4dt=02t21+t4dt=12+2t21+t4dtletintroducethecomplexfunctionf(z)=2z21+z4letfindthepolesoff?1+z4=0z4=ei(2k+1)πsothepolesarezk=ei(2k+1)π4andk[[0,3]]wehavez0=eiπ4,z1=ei3π4,z2=ei5π4z3=ei7π4andRf(z)dz=2iπ(Res(f,z0)+Res(f,z1))Res(f,z0)=2z024z03=12z01=12eiπ4Res(f,z1)=2z124z13=12z11=12ei3π4=12ei(ππ4)=12eiπ4Rf(z)dz=2iπ[12(eiπ4eiπ4)]=iπ(2isin(π4))=2π22=π2I=12Rf(z)dz=π22.

Answered by ajfour last updated on 15/Jan/18

let (√(tan x))=t  ⇒   dx=((2tdt)/(1+t^4 ))  ∫_0 ^(  π/2) (√(tan x))dx=∫_0 ^(  ∞)  ((2t^2 dt)/(1+t^4 ))       =∫_0 ^(  ∞) ((2dt)/(((1/t^2 )+t^2 )))    =∫_0 ^(  ∞) (((1−(1/t^2 ))dt)/((t+(1/t))^2 −2))+∫_0 ^(  ∞) (((1+(1/t^2 ))dt)/((t−(1/t))^2 +2))  =(1/(2(√2))) ln (((t+(1/t)−(√2))/(t+(1/t)+(√2))))∣_0 ^∞ +(1/(√2))tan^(−1) (((t−(1/t))/(√2)))∣_0 ^∞   =0+(1/(√2))((π/2)+(π/2)) =(π/(√2)) .

lettanx=tdx=2tdt1+t40π/2tanxdx=02t2dt1+t4=02dt(1t2+t2)=0(11t2)dt(t+1t)22+0(1+1t2)dt(t1t)2+2=122ln(t+1t2t+1t+2)0+12tan1(t1t2)0=0+12(π2+π2)=π2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com