Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 2783 by 123456 last updated on 27/Nov/15

call γ:=lim_(n→+∞) H_n −ln n  proof that γ is finite and γ∈(0,1)

$$\mathrm{call}\:\gamma:=\underset{{n}\rightarrow+\infty} {\mathrm{lim}H}_{{n}} −\mathrm{ln}\:{n} \\ $$$$\mathrm{proof}\:\mathrm{that}\:\gamma\:\mathrm{is}\:\mathrm{finite}\:\mathrm{and}\:\gamma\in\left(\mathrm{0},\mathrm{1}\right) \\ $$

Commented by Filup last updated on 27/Nov/15

I am curious as to how to solve these  kinds of questions.

$$\mathrm{I}\:\mathrm{am}\:\mathrm{curious}\:\mathrm{as}\:\mathrm{to}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{these} \\ $$$$\mathrm{kinds}\:\mathrm{of}\:\mathrm{questions}. \\ $$

Commented by Filup last updated on 27/Nov/15

What does := mean?  Same as ≡ ?

$$\mathrm{What}\:\mathrm{does}\::=\:\mathrm{mean}? \\ $$$$\mathrm{Same}\:\mathrm{as}\:\equiv\:? \\ $$

Commented by 123456 last updated on 27/Nov/15

:= mean defined  ex:  f(x):=x  f(1)=1

$$:=\:\mathrm{mean}\:\mathrm{defined} \\ $$$$\mathrm{ex}: \\ $$$${f}\left({x}\right):={x} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$

Commented by Filup last updated on 27/Nov/15

Ah I see!

$${Ah}\:\mathrm{I}\:\mathrm{see}! \\ $$

Answered by prakash jain last updated on 27/Nov/15

γ_n =H_n −ln n  H_n =1+(1/2)+(1/3)+..+(1/n)=Σ_(i=1) ^n a_i   a_i =(1/i)  f(x)=(1/x) so that f(i)=a_i   Since f(x) is strictly decreasing +ve function.  From integral test for series  ∫_N ^(M+1) f(x)dx≤Σ_(n=N) ^M  f(n)≤f(N)+∫_N ^M f(x)dx  ...(A)  H_(n−1)  ≥∫_1 ^n (1/x)dx=ln n  So γ_n =H_n −ln n=(1/n)+H_(n−1) −ln n>0       ...(1)  γ_(n+1) =γ_n +(1/(n+1))−ln (n+1)+ln n  (1/(n+1))≤ln((n+1)/n) (comparing area of rectangles)  ⇒γ_(n+1) =γ_n −[ln ((n+1)/n)−(1/(n+1))]<γ_n   γ_n >0 and γ_(n+1) <γ_n   So lim_(n→∞) γ_n  exists and >0.  γ_1 =1−ln 1=1  ∵γ_(n+1) <γ_n   0<γ<1

$$\gamma_{{n}} =\mathrm{H}_{{n}} −\mathrm{ln}\:{n} \\ $$$$\mathrm{H}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+..+\frac{\mathrm{1}}{{n}}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{i}} \\ $$$${a}_{{i}} =\frac{\mathrm{1}}{{i}} \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{{x}}\:\mathrm{so}\:\mathrm{that}\:{f}\left({i}\right)={a}_{{i}} \\ $$$$\mathrm{Since}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{strictly}\:\mathrm{decreasing}\:+\mathrm{ve}\:\mathrm{function}. \\ $$$$\mathrm{From}\:\mathrm{integral}\:\mathrm{test}\:\mathrm{for}\:\mathrm{series} \\ $$$$\int_{{N}} ^{{M}+\mathrm{1}} {f}\left({x}\right){dx}\leqslant\underset{{n}={N}} {\overset{{M}} {\sum}}\:{f}\left({n}\right)\leqslant{f}\left({N}\right)+\int_{{N}} ^{{M}} {f}\left({x}\right){dx}\:\:...\left({A}\right) \\ $$$$\mathrm{H}_{{n}−\mathrm{1}} \:\geqslant\int_{\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{{x}}{dx}=\mathrm{ln}\:{n} \\ $$$${S}\mathrm{o}\:\gamma_{{n}} =\mathrm{H}_{{n}} −\mathrm{ln}\:{n}=\frac{\mathrm{1}}{{n}}+\mathrm{H}_{{n}−\mathrm{1}} −\mathrm{ln}\:{n}>\mathrm{0}\:\:\:\:\:\:\:...\left(\mathrm{1}\right) \\ $$$$\gamma_{{n}+\mathrm{1}} =\gamma_{{n}} +\frac{\mathrm{1}}{{n}+\mathrm{1}}−\mathrm{ln}\:\left({n}+\mathrm{1}\right)+\mathrm{ln}\:{n} \\ $$$$\frac{\mathrm{1}}{{n}+\mathrm{1}}\leqslant\mathrm{ln}\frac{{n}+\mathrm{1}}{{n}}\:\left({comparing}\:{area}\:{of}\:{rectangles}\right) \\ $$$$\Rightarrow\gamma_{{n}+\mathrm{1}} =\gamma_{{n}} −\left[\mathrm{ln}\:\frac{{n}+\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right]<\gamma_{{n}} \\ $$$$\gamma_{{n}} >\mathrm{0}\:{and}\:\gamma_{{n}+\mathrm{1}} <\gamma_{{n}} \\ $$$$\mathrm{So}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\gamma_{{n}} \:{exists}\:\mathrm{and}\:>\mathrm{0}. \\ $$$$\gamma_{\mathrm{1}} =\mathrm{1}−\mathrm{ln}\:\mathrm{1}=\mathrm{1} \\ $$$$\because\gamma_{{n}+\mathrm{1}} <\gamma_{{n}} \\ $$$$\mathrm{0}<\gamma<\mathrm{1} \\ $$

Commented by RasheedAhmad last updated on 29/Nov/15

What is H_n ?

$${What}\:{is}\:\mathrm{H}_{{n}} ? \\ $$

Commented by 123456 last updated on 29/Nov/15

harmonic numbers

$$\mathrm{harmonic}\:\mathrm{numbers} \\ $$

Commented by Rasheed Soomro last updated on 29/Nov/15

THANKS!

$$\mathscr{THANKS}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com