Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 27884 by das47955@mail.com last updated on 16/Jan/18

(3) Find the term independ−  ent of  x  in the expansion of     ( x+(1/x))^2 (x−(1/x))^(12)

(3)Findthetermindependentofxintheexpansionof(x+1x)2(x1x)12

Answered by Rasheed.Sindhi last updated on 16/Jan/18

   ( x+(1/x))^2 (x−(1/x))^(12)     (x^2 +2+(1/x^2 ))(x−(1/x))^(12)   −−−−  T_(r+1) = ((n),(r) ) a^(n−r) b^r   −−−−−−  T_(r+1)  of (x−(1/x))^(12)    T_(r+1) = (((12)),(( r)) ) (x)^(12−r) (−(1/x))^r    T_(r+1) =(−1)^r  (((12)),(( r)) ) (x)^(12−2r)   T_(r+1) multiplied by (x^2 +2+(1/x^2 ))  (x^2 +2+(1/x^2 )).T_(f+1) =x^2 T_(r+1) +2T_(r+1) +((1/x^2 ))T_(r+1)        =x^2 (−1)^r  (((12)),(( r)) ) (x)^(12−2r)                  +2(−1)^r  (((12)),(( r)) ) (x)^(12−2r)                          +((1/x^2 ))(−1)^r  (((12)),(( r)) ) (x)^(12−2r)      =(−r)^r  (((12)),(( r)) ) (x)^(14−2r)           +2(−1)^r  (((12)),(( r)) ) (x)^(12−2r)               +(−1)^r  (((12)),(( r)) ) (x)^(10−2r)   When 14−2r=0⇒r=7  Free of x term 1st part of the above                 (−1)^7  (((12)),(( r)) ) (x)^(14−2(7)) =− (((12)),(( 7)) ) ..(i)  When 12−2r=0⇒r=6  Free of x, 2nd part of above                          2(−1)^6  (((12)),(( r)) ) (x)^(12−2r) =2 (((12)),(( 6)) )...(ii)  When 10−2r=0⇒r=5  Free of x, 3rd part of the above         (−1)^7  (((12)),(( r)) ) (x)^(10−2r) =− (((12)),(( 5)) ) ...(iii)  Free of x term=(i)+(ii)+(iii)         =− (((12)),(( 7)) ) +2 (((12)),(( 6)) ) − (((12)),(( 5)) )             =−792+2×924−792=264

(x+1x)2(x1x)12(x2+2+1x2)(x1x)12Tr+1=(nr)anrbrTr+1of(x1x)12Tr+1=(12r)(x)12r(1x)rTr+1=(1)r(12r)(x)122rTr+1multipliedby(x2+2+1x2)(x2+2+1x2).Tf+1=x2Tr+1+2Tr+1+(1x2)Tr+1=x2(1)r(12r)(x)122r+2(1)r(12r)(x)122r+(1x2)(1)r(12r)(x)122r=(r)r(12r)(x)142r+2(1)r(12r)(x)122r+(1)r(12r)(x)102rWhen142r=0r=7Freeofxterm1stpartoftheabove(1)7(12r)(x)142(7)=(127)..(i)When122r=0r=6Freeofx,2ndpartofabove2(1)6(12r)(x)122r=2(126)...(ii)When102r=0r=5Freeofx,3rdpartoftheabove(1)7(12r)(x)102r=(125)...(iii)Freeofxterm=(i)+(ii)+(iii)=(127)+2(126)(125)=792+2×924792=264

Commented by Rasheed.Sindhi last updated on 16/Jan/18

Corrected now.

Correctednow.

Answered by mrW2 last updated on 16/Jan/18

( x+(1/x))^2 (x−(1/x))^(12)   =(1/x^(14) )( x^2 +1)^2 (x^2 −1)^(12)   =(1/x^(14) )( x^4 +2x^2 +1)(x^2 −1)^(12)   =(1/x^(14) )( x^4 +2x^2 +1)Σ_(k=0) ^(12) C_k ^(12) x^(2k) (−1)^(12−k)   term independent of x is:  (1/x^(14) )×x^4 ×C_5 ^(12) x^(2×5) (−1)^(12−5) +(1/x^(14) )×2x^2 ×C_6 ^(12) x^(2×6) (−1)^(12−6) +(1/x^(14) )×1×C_7 ^(12) x^(2×7) (−1)^(12−7)   =−C_5 ^(12) +2C_6 ^(12) −C_7 ^(12)   =−792+2×924−792  =264

(x+1x)2(x1x)12=1x14(x2+1)2(x21)12=1x14(x4+2x2+1)(x21)12=1x14(x4+2x2+1)12k=0Ck12x2k(1)12ktermindependentofxis:1x14×x4×C512x2×5(1)125+1x14×2x2×C612x2×6(1)126+1x14×1×C712x2×7(1)127=C512+2C612C712=792+2×924792=264

Commented by mrW2 last updated on 16/Jan/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com