Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 27885 by das47955@mail.com last updated on 16/Jan/18

(4)  Find the term indepen−  dent of    x   in the expansion of            (x^2 −2+(1/x^2 ))^6

(4)Findthetermindependentofxintheexpansionof(x22+1x2)6

Commented by Rasheed.Sindhi last updated on 16/Jan/18

x^2 −2+(1/x^2 )=(x−(1/x))^2   (x^2 −2+(1/x^2 ))^6 ={(x−(1/x))^2 }^6   =(x−(1/x))^(12)   T_(r+1) = ((n),(r) ) a^(n−r) b^r    T_(r+1) = (((12)),(r) ) (x)^(12−r) ((1/x))^r    T_(r+1) = (((12)),(r) ) (x)^(12−r−r)   As T_(r+1)  is free of  x  So  12−2r=0⇒r=6  T_(r+1) =T_(6+1) =T_7   T_7  is free of x

x22+1x2=(x1x)2(x22+1x2)6={(x1x)2}6=(x1x)12Tr+1=(nr)anrbrTr+1=(12r)(x)12r(1x)rTr+1=(12r)(x)12rrAsTr+1isfreeofxSo122r=0r=6Tr+1=T6+1=T7T7isfreeofx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com