Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 27899 by Tinkutara last updated on 16/Jan/18

Answered by mrW2 last updated on 17/Jan/18

let e=max. elongation of spring after release  ke=μm_A g     ...(i)  (1/2)kd^2 −μm_B g(d+e)=(1/2)ke^2     ...(ii)  kd^2 −2μm_B gd−(2μm_B g+ke)e=0  kd^2 −2μm_B gd−((m_A (2m_B +m_A )(μg)^2 )/k)=0  ⇒d=((2μm_B g+(√((2μgm_B )^2 +4m_A (2m_B +m_A )(μg)^2 )))/(2k))  ⇒d=((μg(m_A +2m_B ))/k)  ⇒d=((0.5×10(2+2×4))/(50))=1 m

$${let}\:{e}={max}.\:{elongation}\:{of}\:{spring}\:{after}\:{release} \\ $$$${ke}=\mu{m}_{{A}} {g}\:\:\:\:\:...\left({i}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{kd}^{\mathrm{2}} −\mu{m}_{{B}} {g}\left({d}+{e}\right)=\frac{\mathrm{1}}{\mathrm{2}}{ke}^{\mathrm{2}} \:\:\:\:...\left({ii}\right) \\ $$$${kd}^{\mathrm{2}} −\mathrm{2}\mu{m}_{{B}} {gd}−\left(\mathrm{2}\mu{m}_{{B}} {g}+{ke}\right){e}=\mathrm{0} \\ $$$${kd}^{\mathrm{2}} −\mathrm{2}\mu{m}_{{B}} {gd}−\frac{{m}_{{A}} \left(\mathrm{2}{m}_{{B}} +{m}_{{A}} \right)\left(\mu{g}\right)^{\mathrm{2}} }{{k}}=\mathrm{0} \\ $$$$\Rightarrow{d}=\frac{\mathrm{2}\mu{m}_{{B}} {g}+\sqrt{\left(\mathrm{2}\mu{gm}_{{B}} \right)^{\mathrm{2}} +\mathrm{4}{m}_{{A}} \left(\mathrm{2}{m}_{{B}} +{m}_{{A}} \right)\left(\mu{g}\right)^{\mathrm{2}} }}{\mathrm{2}{k}} \\ $$$$\Rightarrow{d}=\frac{\mu{g}\left({m}_{{A}} +\mathrm{2}{m}_{{B}} \right)}{{k}} \\ $$$$\Rightarrow{d}=\frac{\mathrm{0}.\mathrm{5}×\mathrm{10}\left(\mathrm{2}+\mathrm{2}×\mathrm{4}\right)}{\mathrm{50}}=\mathrm{1}\:{m} \\ $$

Commented by Tinkutara last updated on 16/Jan/18

Commented by Tinkutara last updated on 16/Jan/18

This is the solution in book. Can you please explain this? And why your method is wrong? This question was integer type so they approximated it to 1 m.

Commented by mrW2 last updated on 17/Jan/18

When block A is pressed against the  wall, the contact force between block  A and the wall is the push force in  spring, which is kd.  When block B is released, the contact  force btw. A and wall will be reduced  till zero (say at instant t_1 ), then due to  tension force in spring the friction force  btw. A and floor increases from zero till μm_A g   (say at instant t_2 ), after that the block A  begins to move.    The answer depends very much on how  you understand “block A loses contact  to wall”.    My answer is correct, if man  understands the lose of contact as the instant when  block A is about to move away from wall,  i.e. at instant t_2 , when the tension force  in spring just overcomes the static friction  between block A and floor, i.e.   ke=μm_A g.    The answer in book is correct, if man  understands the lose of contact as the instant when  the contact force to the wall becomes zero,  i.e. at instant t_1 . In this case the block  B may move max.  to a position where  the spring has no elongation (e=0) so that  the spring force ( and therefore the contact force to   wall) is zero. The energy stored in the  compressed spring is just enough to compensate  the lose due to friction during the movement of block B in a distance d, i.e.  (1/2)kd^2 =μm_B gd  This is the solution given in book.  You can also get this solution if you put  ke=0 instead of ke=μm_A g  in my eqn. (i).    I don′t agree that the book′s  answer is the only correct answer.   Because it is not clearly defined what  is meant with “block A loses contact  to wall”.

$${When}\:{block}\:{A}\:{is}\:{pressed}\:{against}\:{the} \\ $$$${wall},\:{the}\:{contact}\:{force}\:{between}\:{block} \\ $$$${A}\:{and}\:{the}\:{wall}\:{is}\:{the}\:{push}\:{force}\:{in} \\ $$$${spring},\:{which}\:{is}\:{kd}. \\ $$$${When}\:{block}\:{B}\:{is}\:{released},\:{the}\:{contact} \\ $$$${force}\:{btw}.\:{A}\:{and}\:{wall}\:{will}\:{be}\:{reduced} \\ $$$${till}\:{zero}\:\left({say}\:{at}\:{instant}\:{t}_{\mathrm{1}} \right),\:{then}\:{due}\:{to} \\ $$$${tension}\:{force}\:{in}\:{spring}\:{the}\:{friction}\:{force} \\ $$$${btw}.\:{A}\:{and}\:{floor}\:{increases}\:{from}\:{zero}\:{till}\:\mu{m}_{{A}} {g}\: \\ $$$$\left({say}\:{at}\:{instant}\:{t}_{\mathrm{2}} \right),\:{after}\:{that}\:{the}\:{block}\:{A} \\ $$$${begins}\:{to}\:{move}. \\ $$$$ \\ $$$${The}\:{answer}\:{depends}\:{very}\:{much}\:{on}\:{how} \\ $$$${you}\:{understand}\:``{block}\:{A}\:{loses}\:{contact} \\ $$$${to}\:{wall}''. \\ $$$$ \\ $$$${My}\:{answer}\:{is}\:{correct},\:{if}\:{man} \\ $$$${understands}\:{the}\:{lose}\:{of}\:{contact}\:{as}\:{the}\:{instant}\:{when} \\ $$$${block}\:{A}\:{is}\:{about}\:{to}\:{move}\:{away}\:{from}\:{wall}, \\ $$$${i}.{e}.\:{at}\:{instant}\:{t}_{\mathrm{2}} ,\:{when}\:{the}\:{tension}\:{force} \\ $$$${in}\:{spring}\:{just}\:{overcomes}\:{the}\:{static}\:{friction} \\ $$$${between}\:{block}\:{A}\:{and}\:{floor},\:{i}.{e}.\: \\ $$$${ke}=\mu{m}_{{A}} {g}. \\ $$$$ \\ $$$${The}\:{answer}\:{in}\:{book}\:{is}\:{correct},\:{if}\:{man} \\ $$$${understands}\:{the}\:{lose}\:{of}\:{contact}\:{as}\:{the}\:{instant}\:{when} \\ $$$${the}\:{contact}\:{force}\:{to}\:{the}\:{wall}\:{becomes}\:{zero}, \\ $$$${i}.{e}.\:{at}\:{instant}\:{t}_{\mathrm{1}} .\:{In}\:{this}\:{case}\:{the}\:{block} \\ $$$${B}\:{may}\:{move}\:{max}.\:\:{to}\:{a}\:{position}\:{where} \\ $$$${the}\:{spring}\:{has}\:{no}\:{elongation}\:\left({e}=\mathrm{0}\right)\:{so}\:{that} \\ $$$${the}\:{spring}\:{force}\:\left(\:{and}\:{therefore}\:{the}\:{contact}\:{force}\:{to}\:\right. \\ $$$$\left.{wall}\right)\:{is}\:{zero}.\:{The}\:{energy}\:{stored}\:{in}\:{the} \\ $$$${compressed}\:{spring}\:{is}\:{just}\:{enough}\:{to}\:{compensate} \\ $$$${the}\:{lose}\:{due}\:{to}\:{friction}\:{during}\:{the}\:{movement}\:{of}\:{block}\:{B}\:{in}\:{a}\:{distance}\:{d},\:{i}.{e}. \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{kd}^{\mathrm{2}} =\mu{m}_{{B}} {gd} \\ $$$${This}\:{is}\:{the}\:{solution}\:{given}\:{in}\:{book}. \\ $$$${You}\:{can}\:{also}\:{get}\:{this}\:{solution}\:{if}\:{you}\:{put} \\ $$$${ke}=\mathrm{0}\:{instead}\:{of}\:{ke}=\mu{m}_{{A}} {g}\:\:{in}\:{my}\:{eqn}.\:\left({i}\right). \\ $$$$ \\ $$$${I}\:{don}'{t}\:{agree}\:{that}\:{the}\:{book}'{s} \\ $$$${answer}\:{is}\:{the}\:{only}\:{correct}\:{answer}.\: \\ $$$${Because}\:{it}\:{is}\:{not}\:{clearly}\:{defined}\:{what} \\ $$$${is}\:{meant}\:{with}\:``{block}\:{A}\:{loses}\:{contact} \\ $$$${to}\:{wall}''. \\ $$

Commented by Tinkutara last updated on 17/Jan/18

Thank you very much Sir! I got the answer.

Answered by ajfour last updated on 17/Jan/18

ke=μm_A g    ....(i)  (1/2)kd^2 =(1/2)ke^2 +μm_B g(d+e)   ...(ii)  from (i):        e=((0.5×2×10)/(50))=(1/5)  replacing in (ii):  e=(1/5), k=50  m_A =2 , m_B =4  25d^2 =1+20(d+(1/5))  ⇒  5d^2 −4d−1=0      5(d−(2/5))^2 =(9/5)  d=(2/5)+(3/5) = 1 .

$${ke}=\mu{m}_{{A}} {g}\:\:\:\:....\left({i}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{kd}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{ke}^{\mathrm{2}} +\mu{m}_{{B}} {g}\left({d}+{e}\right)\:\:\:...\left({ii}\right) \\ $$$${from}\:\left({i}\right):\:\:\:\:\:\:\:\:{e}=\frac{\mathrm{0}.\mathrm{5}×\mathrm{2}×\mathrm{10}}{\mathrm{50}}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$${replacing}\:{in}\:\left({ii}\right):\:\:{e}=\frac{\mathrm{1}}{\mathrm{5}},\:{k}=\mathrm{50} \\ $$$${m}_{{A}} =\mathrm{2}\:,\:{m}_{{B}} =\mathrm{4} \\ $$$$\mathrm{25}{d}^{\mathrm{2}} =\mathrm{1}+\mathrm{20}\left({d}+\frac{\mathrm{1}}{\mathrm{5}}\right) \\ $$$$\Rightarrow\:\:\mathrm{5}{d}^{\mathrm{2}} −\mathrm{4}{d}−\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\mathrm{5}\left({d}−\frac{\mathrm{2}}{\mathrm{5}}\right)^{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{5}} \\ $$$${d}=\frac{\mathrm{2}}{\mathrm{5}}+\frac{\mathrm{3}}{\mathrm{5}}\:=\:\mathrm{1}\:. \\ $$

Commented by Tinkutara last updated on 17/Jan/18

Thank you very much Sir! I got the answer.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com