Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 27909 by mondodotto@gmail.com last updated on 16/Jan/18

Commented by abdo imad last updated on 16/Jan/18

we have (d/dx)ln(1−x)= ((−1)/(1−x))=−Σ_(n=0) ^∝  x^n   ⇒ ln(1−x)= −Σ_(n=0) ^∝  (x^(n+1) /(n+1)) =−Σ_(n=1) ^∝  (x^n /n) +λ   and λ=f(0)=0  so ln(1−x)=−Σ_(n=1) ^∝  (x^n /n)  and  ∫_0 ^1  ln(x)ln(1−x)dx= −∫_0 ^1  (Σ_(n=1) ^∝  (x^n /n))lnx dx  =−Σ_(n=1) ^(∝ )  (1/n) ∫_0 ^1 x^n  lnxdx  but integration by parts give  ∫_0 ^1  x^n lnxdx= [ (1/(n+1)) x^(n+1) ln(x)]_0 ^1  −∫_0 ^1   (1/(n+1)) x^(n+1)  (dx/x)  = −(1/((n+1)^2 ))  ⇒  I= Σ_(n=1) ^∝     (1/(n(n+1)^2 )) let decompose  F(x)=  (1/(x(x+1)^2 ))= (a/x) + (b/(x+1)) + (c/((x+1)^2 ))  a=lim_(x−>0) xF(x)=1  c= lim_(x−>−1) (x+1)^2 F(x)=−1  so   F(x)= (1/x) +(b/(x+1)) − (1/((x+1)^2 ))  F(1)= (1/4)=1 +(b/2) −(1/4)⇒1+(b/2) = (1/2) ⇒b=−1  F(x)= (1/x) −(1/(x+1)) −(1/((x+1)^2 ))   and I=lim_(n−>∝) S_n   /  S_n = Σ_(k=1) ^n  (1/(k(k+1)^2 )) = Σ_(k=1) ^n  (1/k) −Σ_(k=1) ^n  (1/(k+1)) −Σ_(k=1) ^n  (1/((k+1)^2 ))  but Σ_(k=1) ^n = H_n ^   and   Σ_(k=1) ^n  (1/((k+1)^2 )) = Σ_(k=1) ^(n+1)   (1/k^2 ) −1  Σ_(k=1) ^n   (1/(k+1)) = Σ_(k=2) ^(n+1)   (1/k) = H_(n+1)    −1  S_n = H_n −H_(n+1)   +1 − Σ_(k=1) ^(n+1)  (1/k^2 ) +1  lim_(n−>∝)  H_n   −H_(n+1) =0  lim_(n−>∝)  Σ_(k=1) ^(n+1)   (1/k^2 )= (π^2 /6)   lim_(n−>∝ )  S_n   = 2−(π^2 /6)   I= 2−(π^2 /6)  .

wehaveddxln(1x)=11x=n=0xnln(1x)=n=0xn+1n+1=n=1xnn+λandλ=f(0)=0soln(1x)=n=1xnnand01ln(x)ln(1x)dx=01(n=1xnn)lnxdx=n=11n01xnlnxdxbutintegrationbypartsgive01xnlnxdx=[1n+1xn+1ln(x)]01011n+1xn+1dxx=1(n+1)2I=n=11n(n+1)2letdecomposeF(x)=1x(x+1)2=ax+bx+1+c(x+1)2a=limx>0xF(x)=1c=limx>1(x+1)2F(x)=1soF(x)=1x+bx+11(x+1)2F(1)=14=1+b2141+b2=12b=1F(x)=1x1x+11(x+1)2andI=limn>∝Sn/Sn=k=1n1k(k+1)2=k=1n1kk=1n1k+1k=1n1(k+1)2butk=1n=Hnandk=1n1(k+1)2=k=1n+11k21k=1n1k+1=k=2n+11k=Hn+11Sn=HnHn+1+1k=1n+11k2+1limn>∝HnHn+1=0limn>∝k=1n+11k2=π26limn>∝Sn=2π26I=2π26.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com