All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 27909 by mondodotto@gmail.com last updated on 16/Jan/18
Commented by abdo imad last updated on 16/Jan/18
wehaveddxln(1−x)=−11−x=−∑n=0∝xn⇒ln(1−x)=−∑n=0∝xn+1n+1=−∑n=1∝xnn+λandλ=f(0)=0soln(1−x)=−∑n=1∝xnnand∫01ln(x)ln(1−x)dx=−∫01(∑n=1∝xnn)lnxdx=−∑n=1∝1n∫01xnlnxdxbutintegrationbypartsgive∫01xnlnxdx=[1n+1xn+1ln(x)]01−∫011n+1xn+1dxx=−1(n+1)2⇒I=∑n=1∝1n(n+1)2letdecomposeF(x)=1x(x+1)2=ax+bx+1+c(x+1)2a=limx−>0xF(x)=1c=limx−>−1(x+1)2F(x)=−1soF(x)=1x+bx+1−1(x+1)2F(1)=14=1+b2−14⇒1+b2=12⇒b=−1F(x)=1x−1x+1−1(x+1)2andI=limn−>∝Sn/Sn=∑k=1n1k(k+1)2=∑k=1n1k−∑k=1n1k+1−∑k=1n1(k+1)2but∑k=1n=Hnand∑k=1n1(k+1)2=∑k=1n+11k2−1∑k=1n1k+1=∑k=2n+11k=Hn+1−1Sn=Hn−Hn+1+1−∑k=1n+11k2+1limn−>∝Hn−Hn+1=0limn−>∝∑k=1n+11k2=π26limn−>∝Sn=2−π26I=2−π26.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com