All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27974 by abdo imad last updated on 18/Jan/18
letputf(t)=∫0∞e−ax−e−bxx2e−tx2dx witht⩾0anda>0andb>0 findaintegralformoff(t).
Commented byabdo imad last updated on 20/Jan/18
afterverifyingthatfisderivableon]0,+∞[wehave f,(t)=−∫0∞(e−ax−e−bx)e−tx2dx =∫0∞e−tx2−bxdx−∫0∞e−tx2−axdxbut ∫0∞e−tx2−axdx=∫0∞e−((tx)2+2a2t(tx)+a24t−a24t)dx =ea24t∫0∞e−(tx+at)2dxthech.tx+at=ugive ∫0∞e−tx2−axdx=ea24t∫at+∞e−u2dut =1tea24t(∫0∞e−u2du−∫0ate−u2du) =1tea24t(π2−∫0ate−u2du)andbythesamemanner weget∫0∞e−tx2−bxdx=1teb24t(π2−∫0bte−u2du) f′(t)=π2t(eb24t−ea24t)+∫0ate−u2du−∫0bte−u2du =π2t(eb24t−ea24t)−∫atbte−u2du=ψ(t)⇒ f(t)=∫.tψ(u)du+λ.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com