Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27974 by abdo imad last updated on 18/Jan/18

let put f(t)=∫_0 ^∞   ((e^(−ax)  − e^(−bx) )/x^2 ) e^(−tx^2 )  dx  with t≥0  and a>0 and b>0  find a integral form of f(t).

letputf(t)=0eaxebxx2etx2dx witht0anda>0andb>0 findaintegralformoff(t).

Commented byabdo imad last updated on 20/Jan/18

after verifying that f is derivable on ]0,+∞[ we have   f^, (t)= −∫_0 ^∞  ( e^(−ax)  −e^(−bx) )e^(−tx^2 ) dx  =∫_0 ^∞  e^(−tx^2 −bx) dx −∫_0 ^∞  e^(−tx^2 −ax) dx   but  ∫_0 ^∞  e^(−tx^2 −ax) dx = ∫_0 ^∞   e^(−(  ((√t)x)^2  +2(a/(2(√t)))((√t)x) + (a^2 /(4t)) −(a^2 /(4t)))) dx  =  e^(a^2 /(4t))   ∫_0 ^∞   e^(−((√t)x +(a/(√t)))^2 ) dx     the ch. (√t)x  +(a/(√t))=u give  ∫_0 ^∞   e^(−tx^2 −ax) dx = e^(a^2 /(4t))   ∫_(a/(√t)) ^(+∞)   e^(−u^2 )  (du/(√t))  = (1/(√t)) e^(a^2 /(4t))  (  ∫_0 ^∞  e^(−u^2 ) du − ∫_0 ^(a/(√t))   e^(−u^2 ) du)  = (1/(√t)) e^(a^2 /(4t))   (    ((√π)/2)  − ∫_0 ^(a/(√t))   e^(−u^2 ) du) and by the same manner  we get  ∫_0 ^∞   e^(−tx^2 −bx) dx = (1/(√t)) e^(b^2 /(4t)) (  ((√π)/2) − ∫_0 ^(b/(√t)) e^(−u^2 ) du)  f^′ (t)= ((√π_ )/(2(√t)))(  e^(b^2 /(4t))  − e^(a^2 /(4t)) ) + ∫_0 ^(a/(√t))   e^(−u^2 ) du  −∫_0 ^(b/(√t))   e^(−u^2 ) du  = ((√π)/(2(√t))) (  e^(b^2 /(4t))   − e^(a^2 /(4t)) ) −∫_(a/(√t)) ^(b/(√t))   e^(−u^2 )  du =  ψ(t) ⇒  f(t)= ∫_. ^t  ψ(u)du  +λ  .

afterverifyingthatfisderivableon]0,+[wehave f,(t)=0(eaxebx)etx2dx =0etx2bxdx0etx2axdxbut 0etx2axdx=0e((tx)2+2a2t(tx)+a24ta24t)dx =ea24t0e(tx+at)2dxthech.tx+at=ugive 0etx2axdx=ea24tat+eu2dut =1tea24t(0eu2du0ateu2du) =1tea24t(π20ateu2du)andbythesamemanner weget0etx2bxdx=1teb24t(π20bteu2du) f(t)=π2t(eb24tea24t)+0ateu2du0bteu2du =π2t(eb24tea24t)atbteu2du=ψ(t) f(t)=.tψ(u)du+λ.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com