Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 28027 by ajfour last updated on 18/Jan/18

Answered by mrW2 last updated on 19/Jan/18

radius of base circle =R  radius of disc in distance x from the  base is r=((h−x)/h)×R=(1−(x/h))R  mass of disc is dm=ρπr^2 dx  moment of inertia of disc about its own diameter  is I_0 =((r^2 dm)/4), and about the diameter of  base is then dI=x^2 dm+((r^2 dm)/4)  I=∫^  (x^2 dm+((r^2 dm)/4))=∫(x^2 +(r^2 /4))dm  =∫_0 ^( h) (x^2 +(r^2 /4))ρπr^2 dx  =((ρπ)/4)∫_0 ^( h) (4x^2 +r^2 )r^2 dx  =((ρπ)/4)∫_0 ^( h) [4x^2 +(1−(x/h))^2 R^2 ](1−(x/h))^2 R^2 dx  =((ρπhR^4 )/4)∫_0 ^( h) [((4h^2 )/R^2 )((x/h))^2 +(1−(x/h))^2 ](1−(x/h))^2 d((x/h))  =((ρπhR^4 )/4)∫_0 ^( 1) [((4h^2 )/R^2 )(1−s)^2 +s^2 ]s^2 ds  =((ρπhR^4 )/4)∫_0 ^( 1) [((4h^2 )/R^2 )(s^2 −2s^3 +s^4 )+s^4 ]ds  =((ρπhR^4 )/4)[((4h^2 )/R^2 )((s^3 /3)−(s^4 /2)+(s^5 /5))+(s^5 /5)]_0 ^1   =((ρπhR^4 )/4)[((4h^2 )/R^2 )((1/3)−(1/2)+(1/5))+(1/5)]  =((ρπhR^4 )/4)(((2h^2 )/(15R^2 ))+(1/5))  =((ρπhR^2 (2h^2 +3R^2 ))/(60))  =((ρπhR^2 )/3)×(((2h^2 +3R^2 ))/(20))  ⇒I=((M(2h^2 +3R^2 ))/(20))

$${radius}\:{of}\:{base}\:{circle}\:={R} \\ $$$${radius}\:{of}\:{disc}\:{in}\:{distance}\:{x}\:{from}\:{the} \\ $$$${base}\:{is}\:{r}=\frac{{h}−{x}}{{h}}×{R}=\left(\mathrm{1}−\frac{{x}}{{h}}\right){R} \\ $$$${mass}\:{of}\:{disc}\:{is}\:{dm}=\rho\pi{r}^{\mathrm{2}} {dx} \\ $$$${moment}\:{of}\:{inertia}\:{of}\:{disc}\:{about}\:{its}\:{own}\:{diameter} \\ $$$${is}\:{I}_{\mathrm{0}} =\frac{{r}^{\mathrm{2}} {dm}}{\mathrm{4}},\:{and}\:{about}\:{the}\:{diameter}\:{of} \\ $$$${base}\:{is}\:{then}\:{dI}={x}^{\mathrm{2}} {dm}+\frac{{r}^{\mathrm{2}} {dm}}{\mathrm{4}} \\ $$$${I}=\int^{\:} \left({x}^{\mathrm{2}} {dm}+\frac{{r}^{\mathrm{2}} {dm}}{\mathrm{4}}\right)=\int\left({x}^{\mathrm{2}} +\frac{{r}^{\mathrm{2}} }{\mathrm{4}}\right){dm} \\ $$$$=\int_{\mathrm{0}} ^{\:{h}} \left({x}^{\mathrm{2}} +\frac{{r}^{\mathrm{2}} }{\mathrm{4}}\right)\rho\pi{r}^{\mathrm{2}} {dx} \\ $$$$=\frac{\rho\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\:{h}} \left(\mathrm{4}{x}^{\mathrm{2}} +{r}^{\mathrm{2}} \right){r}^{\mathrm{2}} {dx} \\ $$$$=\frac{\rho\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\:{h}} \left[\mathrm{4}{x}^{\mathrm{2}} +\left(\mathrm{1}−\frac{{x}}{{h}}\right)^{\mathrm{2}} {R}^{\mathrm{2}} \right]\left(\mathrm{1}−\frac{{x}}{{h}}\right)^{\mathrm{2}} {R}^{\mathrm{2}} {dx} \\ $$$$=\frac{\rho\pi{hR}^{\mathrm{4}} }{\mathrm{4}}\int_{\mathrm{0}} ^{\:{h}} \left[\frac{\mathrm{4}{h}^{\mathrm{2}} }{{R}^{\mathrm{2}} }\left(\frac{{x}}{{h}}\right)^{\mathrm{2}} +\left(\mathrm{1}−\frac{{x}}{{h}}\right)^{\mathrm{2}} \right]\left(\mathrm{1}−\frac{{x}}{{h}}\right)^{\mathrm{2}} {d}\left(\frac{{x}}{{h}}\right) \\ $$$$=\frac{\rho\pi{hR}^{\mathrm{4}} }{\mathrm{4}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left[\frac{\mathrm{4}{h}^{\mathrm{2}} }{{R}^{\mathrm{2}} }\left(\mathrm{1}−{s}\right)^{\mathrm{2}} +{s}^{\mathrm{2}} \right]{s}^{\mathrm{2}} {ds} \\ $$$$=\frac{\rho\pi{hR}^{\mathrm{4}} }{\mathrm{4}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left[\frac{\mathrm{4}{h}^{\mathrm{2}} }{{R}^{\mathrm{2}} }\left({s}^{\mathrm{2}} −\mathrm{2}{s}^{\mathrm{3}} +{s}^{\mathrm{4}} \right)+{s}^{\mathrm{4}} \right]{ds} \\ $$$$=\frac{\rho\pi{hR}^{\mathrm{4}} }{\mathrm{4}}\left[\frac{\mathrm{4}{h}^{\mathrm{2}} }{{R}^{\mathrm{2}} }\left(\frac{{s}^{\mathrm{3}} }{\mathrm{3}}−\frac{{s}^{\mathrm{4}} }{\mathrm{2}}+\frac{{s}^{\mathrm{5}} }{\mathrm{5}}\right)+\frac{{s}^{\mathrm{5}} }{\mathrm{5}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{\rho\pi{hR}^{\mathrm{4}} }{\mathrm{4}}\left[\frac{\mathrm{4}{h}^{\mathrm{2}} }{{R}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{5}}\right)+\frac{\mathrm{1}}{\mathrm{5}}\right] \\ $$$$=\frac{\rho\pi{hR}^{\mathrm{4}} }{\mathrm{4}}\left(\frac{\mathrm{2}{h}^{\mathrm{2}} }{\mathrm{15}{R}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{5}}\right) \\ $$$$=\frac{\rho\pi{hR}^{\mathrm{2}} \left(\mathrm{2}{h}^{\mathrm{2}} +\mathrm{3}{R}^{\mathrm{2}} \right)}{\mathrm{60}} \\ $$$$=\frac{\rho\pi{hR}^{\mathrm{2}} }{\mathrm{3}}×\frac{\left(\mathrm{2}{h}^{\mathrm{2}} +\mathrm{3}{R}^{\mathrm{2}} \right)}{\mathrm{20}} \\ $$$$\Rightarrow{I}=\frac{{M}\left(\mathrm{2}{h}^{\mathrm{2}} +\mathrm{3}{R}^{\mathrm{2}} \right)}{\mathrm{20}} \\ $$

Commented by ajfour last updated on 19/Jan/18

Great so quick Sir! you are  wonderful. Answer is right sir.  I havefollowed it carefully,Sir .  the integral is e^x cellently handled !

$${Great}\:{so}\:{quick}\:{Sir}!\:{you}\:{are} \\ $$$${wonderful}.\:{Answer}\:{is}\:{right}\:{sir}. \\ $$$${I}\:{havefollowed}\:{it}\:{carefully},{Sir}\:. \\ $$$${the}\:{integral}\:{is}\:{e}^{{x}} {cellently}\:{handled}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com