All Questions Topic List
Mechanics Questions
Previous in All Question Next in All Question
Previous in Mechanics Next in Mechanics
Question Number 28027 by ajfour last updated on 18/Jan/18
Answered by mrW2 last updated on 19/Jan/18
radiusofbasecircle=Rradiusofdiscindistancexfromthebaseisr=h−xh×R=(1−xh)Rmassofdiscisdm=ρπr2dxmomentofinertiaofdiscaboutitsowndiameterisI0=r2dm4,andaboutthediameterofbaseisthendI=x2dm+r2dm4I=∫(x2dm+r2dm4)=∫(x2+r24)dm=∫0h(x2+r24)ρπr2dx=ρπ4∫0h(4x2+r2)r2dx=ρπ4∫0h[4x2+(1−xh)2R2](1−xh)2R2dx=ρπhR44∫0h[4h2R2(xh)2+(1−xh)2](1−xh)2d(xh)=ρπhR44∫01[4h2R2(1−s)2+s2]s2ds=ρπhR44∫01[4h2R2(s2−2s3+s4)+s4]ds=ρπhR44[4h2R2(s33−s42+s55)+s55]01=ρπhR44[4h2R2(13−12+15)+15]=ρπhR44(2h215R2+15)=ρπhR2(2h2+3R2)60=ρπhR23×(2h2+3R2)20⇒I=M(2h2+3R2)20
Commented by ajfour last updated on 19/Jan/18
GreatsoquickSir!youarewonderful.Answerisrightsir.Ihavefolloweditcarefully,Sir.theintegralisexcellentlyhandled!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com