All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 28033 by abdo imad last updated on 18/Jan/18
1)findthevalueof∫0∞ln(x)1+x2dx2)findthevalueof∫0∞xln(x)(1+x2)2dx.
Commented by abdo imad last updated on 20/Jan/18
1)letputI=∫0∞ln(x)1+x2dxthech.x=1tgiveI=−∫0∞−ln(t)1+1t2−dtt2=−∫0∞ln(t)t2+1=−I⇒2I=0⇒I=0.2)letputJ=∫0∞xln(x)(1+x2)2dxx=tant⇒J=∫0π2tantln(tant)(1+tan2t)2(1+tan2t)dt=∫0π2cos2tsintcostln(sintcost)dt=∫0π2costsintln(sintcost)dt=12∫0π2sin(2t)(ln(sint)−ln(cost))dt=12∫0π2sin(2t)ln(sint)dt−12∫0π2sin(2t)ln(cost)dtthech.t=π2−αgive∫0π2sin(2t)ln(cost)dt=∫0π2sin(2α)ln(sinα)dαsoJ=0.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com