All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 28035 by abdo imad last updated on 18/Jan/18
findthevalueof∫0∞xarctan(2x)(2+x2)2dx.
Commented by abdo imad last updated on 23/Jan/18
letintegratrbypartsMissing \left or extra \rightMissing \left or extra \right=∫0∞dx(2+x2)(1+4x2)=12∫Rdx(2+x2)(1+4x2)letintroducethecomplexfunctionf(z)=1(z2+2)(4z2+1)polesoff?f(z)=4(z−2i)(x+2i)(z−i2)(z+i2)thepolesoffare2i,−2i,i2and−i2∫Rf(x)dz=2iπ(Res(f,2i)+Res(f,i2))Res(f,2i)=14(22i))((2i)2+14)=182i(−2+14)=182i.−74=−1142iRes(f,i2)=14(i2−2i)(i2+2i)i=14(−14+2)i=17i∫Rf(z)dz=2iπ(−1142i+17i)=−π72+2π7=2π2−π72.
I=12∫Rf(z)dz.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com