Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28035 by abdo imad last updated on 18/Jan/18

find the value of  ∫_0 ^∞    x((arctan(2x))/((2+x^2 )^2 ))dx .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:{x}\frac{{arctan}\left(\mathrm{2}{x}\right)}{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:. \\ $$

Commented by abdo imad last updated on 23/Jan/18

let integratr by parts   I= ((−1)/(2(2+x^2 ))) arctan(2x)]^(+∞) _0  +∫_0 ^∞    ((2dx)/(2(2+x^2 )(1+4x^2 )))  = ∫_0 ^∞     (dx/((2+x^2 )(1+4x^2 )))  =(1/2)∫_(R )  (dx/((2+x^2 )(1+4x^2 ))) let introduce  the complex function  f(z)=     (1/((z^2  +2)(4z^2 +1)))  poles of f?  f(z)=   (/(4(z−(√2)i)(x+(√2)i)(z−(i/2))(z+(i/2))))  the poles of f are (√2)i,−(√2)i,(i/2) and ((−i)/2)  ∫_R f(x)dz=2iπ(Res(f,(√2)i)+Res(f,(i/2)))  Res(f,(√2)i)=    (1/(4(2(√2)i))(((√2)i)^2  +(1/4))))  =    (1/(8(√2)i(−2 +(1/4))))= (1/(8(√2)i .((−7)/4)))  = ((−1)/(14(√2)i))  Res(f,(i/2))=         (1/(4((i/2) −(√2)i)((i/2)+(√2)i)i))  =    (1/(4( −(1/4)+2)i))=  (1/(7i))  ∫_R ^ f(z)dz=2iπ(  ((−1)/(14(√2)i)) + (1/(7i)))  = ((−π)/(7(√2)))  +((2π)/7)=((2π(√2)−π)/(7(√2))) .

$${let}\:{integratr}\:{by}\:{parts}\: \\ $$$$\left.{I}=\:\frac{−\mathrm{1}}{\mathrm{2}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)}\:{arctan}\left(\mathrm{2}{x}\right)\underset{\mathrm{0}} {\right]}^{+\infty} \:+\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{dx}}{\mathrm{2}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{{R}\:} \:\frac{{dx}}{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)}\:{let}\:{introduce} \\ $$$${the}\:{complex}\:{function} \\ $$$${f}\left({z}\right)=\:\:\:\:\:\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} \:+\mathrm{2}\right)\left(\mathrm{4}{z}^{\mathrm{2}} +\mathrm{1}\right)}\:\:{poles}\:{of}\:{f}? \\ $$$${f}\left({z}\right)=\:\:\:\frac{}{\mathrm{4}\left({z}−\sqrt{\mathrm{2}}{i}\right)\left({x}+\sqrt{\mathrm{2}}{i}\right)\left({z}−\frac{{i}}{\mathrm{2}}\right)\left({z}+\frac{{i}}{\mathrm{2}}\right)} \\ $$$${the}\:{poles}\:{of}\:{f}\:{are}\:\sqrt{\mathrm{2}}{i},−\sqrt{\mathrm{2}}{i},\frac{{i}}{\mathrm{2}}\:{and}\:\frac{−{i}}{\mathrm{2}} \\ $$$$\int_{{R}} {f}\left({x}\right){dz}=\mathrm{2}{i}\pi\left({Res}\left({f},\sqrt{\mathrm{2}}{i}\right)+{Res}\left({f},\frac{{i}}{\mathrm{2}}\right)\right) \\ $$$${Res}\left({f},\sqrt{\mathrm{2}}{i}\right)=\:\:\:\:\frac{\mathrm{1}}{\left.\mathrm{4}\left(\mathrm{2}\sqrt{\mathrm{2}}{i}\right)\right)\left(\left(\sqrt{\mathrm{2}}{i}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{4}}\right)} \\ $$$$=\:\:\:\:\frac{\mathrm{1}}{\mathrm{8}\sqrt{\mathrm{2}}{i}\left(−\mathrm{2}\:+\frac{\mathrm{1}}{\mathrm{4}}\right)}=\:\frac{\mathrm{1}}{\mathrm{8}\sqrt{\mathrm{2}}{i}\:.\frac{−\mathrm{7}}{\mathrm{4}}} \\ $$$$=\:\frac{−\mathrm{1}}{\mathrm{14}\sqrt{\mathrm{2}}{i}} \\ $$$${Res}\left({f},\frac{{i}}{\mathrm{2}}\right)=\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}\left(\frac{{i}}{\mathrm{2}}\:−\sqrt{\mathrm{2}}{i}\right)\left(\frac{{i}}{\mathrm{2}}+\sqrt{\mathrm{2}}{i}\right){i}} \\ $$$$=\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}\left(\:−\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{2}\right){i}}=\:\:\frac{\mathrm{1}}{\mathrm{7}{i}} \\ $$$$\int_{{R}} ^{} {f}\left({z}\right){dz}=\mathrm{2}{i}\pi\left(\:\:\frac{−\mathrm{1}}{\mathrm{14}\sqrt{\mathrm{2}}{i}}\:+\:\frac{\mathrm{1}}{\mathrm{7}{i}}\right) \\ $$$$=\:\frac{−\pi}{\mathrm{7}\sqrt{\mathrm{2}}}\:\:+\frac{\mathrm{2}\pi}{\mathrm{7}}=\frac{\mathrm{2}\pi\sqrt{\mathrm{2}}−\pi}{\mathrm{7}\sqrt{\mathrm{2}}}\:. \\ $$

Commented by abdo imad last updated on 23/Jan/18

I= (1/2)∫_R f(z)dz.

$${I}=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{{R}} {f}\left({z}\right){dz}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com