Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 28050 by ajfour last updated on 19/Jan/18

Commented by ajfour last updated on 19/Jan/18

The blue disc, radius r,mass m,  rolls on the ground in a circle of  radius R. It rolls and its axis  maintains a constant angle with  the horizontal plane. Assuming  no energy losses therefore, find  its kinetic energy.

$${The}\:{blue}\:{disc},\:{radius}\:\boldsymbol{{r}},{mass}\:\boldsymbol{{m}}, \\ $$$${rolls}\:{on}\:{the}\:{ground}\:{in}\:{a}\:{circle}\:{of} \\ $$$${radius}\:\boldsymbol{{R}}.\:{It}\:{rolls}\:{and}\:{its}\:{axis} \\ $$$${maintains}\:{a}\:{constant}\:{angle}\:{with} \\ $$$${the}\:{horizontal}\:{plane}.\:{Assuming} \\ $$$${no}\:{energy}\:{losses}\:{therefore},\:{find} \\ $$$${its}\:{kinetic}\:{energy}. \\ $$

Commented by mrW2 last updated on 19/Jan/18

KE=(1/2)Iω^2 +(1/2)mv^2 =(1/2)×((mr^2 )/2)ω^2 +(1/2)m(rω)^2 =((3mr^2 ω^2 )/4)

$${KE}=\frac{\mathrm{1}}{\mathrm{2}}{I}\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}×\frac{{mr}^{\mathrm{2}} }{\mathrm{2}}\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{m}\left({r}\omega\right)^{\mathrm{2}} =\frac{\mathrm{3}{mr}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{4}} \\ $$

Commented by ajfour last updated on 19/Jan/18

Find ω also if the disc has to keep  rolling in the circle of radius R,  Sir.The disc is thin, its axis is  bent by some acute angle.   Further we have two ω types..

$${Find}\:\omega\:{also}\:{if}\:{the}\:{disc}\:{has}\:{to}\:{keep} \\ $$$${rolling}\:{in}\:{the}\:{circle}\:{of}\:{radius}\:{R}, \\ $$$${Sir}.{The}\:{disc}\:{is}\:{thin},\:{its}\:{axis}\:{is} \\ $$$${bent}\:{by}\:{some}\:{acute}\:{angle}.\: \\ $$$${Further}\:{we}\:{have}\:{two}\:\omega\:{types}.. \\ $$

Commented by mrW2 last updated on 19/Jan/18

KE=((3mgr)/4)(√(1−((r/R))^2 ))

$${KE}=\frac{\mathrm{3}{mgr}}{\mathrm{4}}\sqrt{\mathrm{1}−\left(\frac{{r}}{{R}}\right)^{\mathrm{2}} } \\ $$

Commented by ajfour last updated on 19/Jan/18

cannot confirm Sir, the question  occured to me seeing a little   similar one in a book.  Please explain.

$${cannot}\:{confirm}\:{Sir},\:{the}\:{question} \\ $$$${occured}\:{to}\:{me}\:{seeing}\:{a}\:{little}\: \\ $$$${similar}\:{one}\:{in}\:{a}\:{book}. \\ $$$${Please}\:{explain}. \\ $$

Commented by mrW2 last updated on 19/Jan/18

KE=((3mv^2 )/4)  ((mv^2 )/(R′))=mg sin θ=mg (r/R)  R′=(√(R^2 −r^2 ))  ((mv^2 )/(√(R^2 −r^2 )))=mg(r/R)  ⇒v^2 =gr(√(1−((r/R))^2 ))  ⇒KE=((3mgr)/4)(√(1−((r/R))^2 ))

$${KE}=\frac{\mathrm{3}{mv}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\frac{{mv}^{\mathrm{2}} }{{R}'}={mg}\:\mathrm{sin}\:\theta={mg}\:\frac{{r}}{{R}} \\ $$$${R}'=\sqrt{{R}^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$$\frac{{mv}^{\mathrm{2}} }{\sqrt{{R}^{\mathrm{2}} −{r}^{\mathrm{2}} }}={mg}\frac{{r}}{{R}} \\ $$$$\Rightarrow{v}^{\mathrm{2}} ={gr}\sqrt{\mathrm{1}−\left(\frac{{r}}{{R}}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{KE}=\frac{\mathrm{3}{mgr}}{\mathrm{4}}\sqrt{\mathrm{1}−\left(\frac{{r}}{{R}}\right)^{\mathrm{2}} } \\ $$

Commented by mrW2 last updated on 19/Jan/18

Commented by ajfour last updated on 19/Jan/18

why should sin θ=(r/R) , i couldn′t  follow , Sir. Do make clear a little  more.

$${why}\:{should}\:\mathrm{sin}\:\theta=\frac{{r}}{{R}}\:,\:{i}\:{couldn}'{t} \\ $$$${follow}\:,\:{Sir}.\:{Do}\:{make}\:{clear}\:{a}\:{little} \\ $$$${more}. \\ $$

Commented by mrW2 last updated on 19/Jan/18

I think the force component mg sin θ  should point to the center of circle,  that means sin θ=(r/R), as the diagram  shows.

$${I}\:{think}\:{the}\:{force}\:{component}\:{mg}\:\mathrm{sin}\:\theta \\ $$$${should}\:{point}\:{to}\:{the}\:{center}\:{of}\:{circle}, \\ $$$${that}\:{means}\:\mathrm{sin}\:\theta=\frac{{r}}{{R}},\:{as}\:{the}\:{diagram} \\ $$$${shows}. \\ $$

Commented by ajfour last updated on 19/Jan/18

good clue, Sir. Thank you.

$${good}\:{clue},\:{Sir}.\:{Thank}\:{you}. \\ $$

Commented by ajfour last updated on 20/Jan/18

but in one revolution, there is one  rotation even of the disc about  vertical axis, Sir !

$${but}\:{in}\:{one}\:{revolution},\:{there}\:{is}\:{one} \\ $$$${rotation}\:{even}\:{of}\:{the}\:{disc}\:{about} \\ $$$${vertical}\:{axis},\:{Sir}\:! \\ $$

Commented by mrW2 last updated on 20/Jan/18

Yes. I noticed this too. The disc makes  one rotation about its vertical axis   when it rolls a round alone the circle.  The angular speed is ω_3 =((2π)/((2πR)/v))=(v/R)=((ω_1 r)/R),  the corresponding KE_3 =(1/2)I_3 ω_3 ^2   =(1/2)×((mr^2 )/4)×(v^2 /R^2 )=((mgr^3 )/(8R^2 ))(√(1−((r/R))^2 ))  ⇒KE_(total) =((mgr)/8)[6+((r/R))^2 ](√(1−((r/R))^2 ))

$${Yes}.\:{I}\:{noticed}\:{this}\:{too}.\:{The}\:{disc}\:{makes} \\ $$$${one}\:{rotation}\:{about}\:{its}\:{vertical}\:{axis}\: \\ $$$${when}\:{it}\:{rolls}\:{a}\:{round}\:{alone}\:{the}\:{circle}. \\ $$$${The}\:{angular}\:{speed}\:{is}\:\omega_{\mathrm{3}} =\frac{\mathrm{2}\pi}{\frac{\mathrm{2}\pi{R}}{{v}}}=\frac{{v}}{{R}}=\frac{\omega_{\mathrm{1}} {r}}{{R}}, \\ $$$${the}\:{corresponding}\:{KE}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}{I}_{\mathrm{3}} \omega_{\mathrm{3}} ^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\frac{{mr}^{\mathrm{2}} }{\mathrm{4}}×\frac{{v}^{\mathrm{2}} }{{R}^{\mathrm{2}} }=\frac{{mgr}^{\mathrm{3}} }{\mathrm{8}{R}^{\mathrm{2}} }\sqrt{\mathrm{1}−\left(\frac{{r}}{{R}}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{KE}_{{total}} =\frac{{mgr}}{\mathrm{8}}\left[\mathrm{6}+\left(\frac{{r}}{{R}}\right)^{\mathrm{2}} \right]\sqrt{\mathrm{1}−\left(\frac{{r}}{{R}}\right)^{\mathrm{2}} } \\ $$

Commented by ajfour last updated on 20/Jan/18

If it is correct , really wondurful  Sir, i am amazed!

$${If}\:{it}\:{is}\:{correct}\:,\:{really}\:{wondurful} \\ $$$${Sir},\:{i}\:{am}\:{amazed}! \\ $$

Commented by ajfour last updated on 20/Jan/18

I_3 =((mr^2 )/4)   i think i cant be very sure  without your help, Sir ..

$${I}_{\mathrm{3}} =\frac{{mr}^{\mathrm{2}} }{\mathrm{4}}\:\:\:{i}\:{think}\:{i}\:{cant}\:{be}\:{very}\:{sure} \\ $$$${without}\:{your}\:{help},\:{Sir}\:.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com