Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28073 by abdo imad last updated on 20/Jan/18

find  ∫_0 ^1  e^(−2x) ln(1+t e^(−x) )dx   with  0<t<1  .

find01e2xln(1+tex)dxwith0<t<1.

Commented byabdo imad last updated on 26/Jan/18

let put  f(t) = ∫_0 ^1  e^(−2x) ln(1+t e^(−x) )dx  f^′ (t)=  ∫_0 ^1  e^(−2x)  (e^(−x) /(1+t e^(−x) ))dx = ∫_0 ^1  e^(−3x)  (Σ_(n=0) ^∝  (−1)^n  t^n  e^(−nx) )dx  = Σ_(n=0) ^∝   (−1)^n  t^n   ∫_0 ^1  e^(−(n+3)x) dx  = Σ_(n=0) ^∞  (((−1)^n t^n )/(−(n+3)))  [  e^(−(n+3)x) ]_0 ^1   =−Σ_(n=0) ^∞   (((−1)^n  t^n )/(n+3)) (e^(−(n+3))  −1)  = Σ_(n=0) ^(+∞)   (((−1)^n )/(n+3)) t^n   − Σ_(n=0) ^(+∞)    (((−1)^n t^n  e^(−(n+3)) )/(n+3))  ⇒ f(t) = ∫_0 ^t (....)du +λ  = Σ_(n=0) ^∝   (((−1)^n )/((n+1)(n+3))) t^(n+1)   −Σ_(n.0) ^∝  (((−1)^n t^(n+1)  e^(−(n+3)) )/((n+1)(n+3))) +λ  λ=f(0)=0  and  f(x)= (1/2) Σ_(n=0) ^∝  (−1)^n ( (1/(n+1)) −(1/(n+3)))t^(n+1)       − (e^(−2) /2)Σ_(n=0) ^∝   (−1)^n ( (1/(n+1)) − (1/(n+3)))(te^(−1) )^(n+1)   = (1/(2 ))Σ_(n=0) ^∝  (((−1)^n )/(n+1))t^(n+1)   −(1/2) Σ_(n=0) ^∝   (((−1)^n t^(n+1) )/(n+3))  −(e^(−2) /2) Σ_(n=0) ^∝  (((−1)^n (te^(−1) )^(n+1) )/(n+1))  +(e^(−2) /2) Σ_(n=0) ^∝  (((−1)^n (t e^(−1) )^(n+1) )/(n+3))  and all those sum are calculable ...be contiued.

letputf(t)=01e2xln(1+tex)dx f(t)=01e2xex1+texdx=01e3x(n=0(1)ntnenx)dx =n=0(1)ntn01e(n+3)xdx =n=0(1)ntn(n+3)[e(n+3)x]01 =n=0(1)ntnn+3(e(n+3)1) =n=0+(1)nn+3tnn=0+(1)ntne(n+3)n+3 f(t)=0t(....)du+λ =n=0(1)n(n+1)(n+3)tn+1n.0(1)ntn+1e(n+3)(n+1)(n+3)+λ λ=f(0)=0and f(x)=12n=0(1)n(1n+11n+3)tn+1 e22n=0(1)n(1n+11n+3)(te1)n+1 =12n=0(1)nn+1tn+112n=0(1)ntn+1n+3 e22n=0(1)n(te1)n+1n+1+e22n=0(1)n(te1)n+1n+3 andallthosesumarecalculable...becontiued.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com