Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 28124 by ajfour last updated on 20/Jan/18

f(R^+ →R) is a differentiable  function obeying  2f(x)=f(xy)+f((x/y))  for all x,y ∈ R^+  and   f(1)=0, f ′(1)=1 .  Find f(x). More questions may  follow..

$${f}\left({R}^{+} \rightarrow{R}\right)\:{is}\:{a}\:{differentiable} \\ $$$${function}\:{obeying} \\ $$$$\mathrm{2}{f}\left({x}\right)={f}\left({xy}\right)+{f}\left(\frac{{x}}{{y}}\right) \\ $$$${for}\:{all}\:{x},{y}\:\in\:{R}^{+} \:{and}\: \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{0},\:{f}\:'\left(\mathrm{1}\right)=\mathrm{1}\:. \\ $$$${Find}\:{f}\left({x}\right).\:{More}\:{questions}\:{may} \\ $$$${follow}.. \\ $$

Commented by prakash jain last updated on 20/Jan/18

y=x  f(x^2 )=2f(x)  f(x)=cln x  check  2cln x=cln x+cln y+cln x−cln y  f′(x)=(c/x)  f′(1)=1⇒c=1  f(x)=ln x

$${y}={x} \\ $$$${f}\left({x}^{\mathrm{2}} \right)=\mathrm{2}{f}\left({x}\right) \\ $$$${f}\left({x}\right)={c}\mathrm{ln}\:{x} \\ $$$${check} \\ $$$$\mathrm{2}{c}\mathrm{ln}\:{x}={c}\mathrm{ln}\:{x}+{c}\mathrm{ln}\:{y}+{c}\mathrm{ln}\:{x}−{c}\mathrm{ln}\:{y} \\ $$$${f}'\left({x}\right)=\frac{{c}}{{x}} \\ $$$${f}'\left(\mathrm{1}\right)=\mathrm{1}\Rightarrow{c}=\mathrm{1} \\ $$$${f}\left({x}\right)=\mathrm{ln}\:{x} \\ $$

Commented by ajfour last updated on 20/Jan/18

Are the following true:  (i) No. of solutions of f^( −1) (x)=x^5   is 3  (ii)there is at least one point α∈  (0,∞) for which f^( −1) (x)−x^5  > 0  for x∈ (α,∞) ?

$${Are}\:{the}\:{following}\:{true}: \\ $$$$\left({i}\right)\:{No}.\:{of}\:{solutions}\:{of}\:{f}^{\:−\mathrm{1}} \left({x}\right)={x}^{\mathrm{5}} \\ $$$${is}\:\mathrm{3} \\ $$$$\left({ii}\right){there}\:{is}\:{at}\:{least}\:{one}\:{point}\:\alpha\in \\ $$$$\left(\mathrm{0},\infty\right)\:{for}\:{which}\:{f}^{\:−\mathrm{1}} \left({x}\right)−{x}^{\mathrm{5}} \:>\:\mathrm{0} \\ $$$${for}\:{x}\in\:\left(\alpha,\infty\right)\:? \\ $$

Commented by ajfour last updated on 20/Jan/18

thank you Sir.

$${thank}\:{you}\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com