Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 28138 by abdo imad last updated on 21/Jan/18

studie and?give the graph for the function  f(x)= e^x   −x^e      .

$${studie}\:{and}?{give}\:{the}\:{graph}\:{for}\:{the}\:{function} \\ $$$${f}\left({x}\right)=\:{e}^{{x}} \:\:−{x}^{{e}} \:\:\:\:\:. \\ $$

Commented by abdo imad last updated on 26/Jan/18

we have f(x)= e^x  −e^(elnx)   ⇒ D_f =]0,+∝[  lim_(x→0^+ ) f(x)= 1   and lim_(x→+∞) f(x)=lim_(x→+∞) e^x ( 1−e^(−x+elnx) )  =lim_(x→+∞)  e^x (1 −e^(−x(1−((elnx)/x))) )=lim _(x→+∞^ )   e^x =+∞  lim_(x→+∞)  ((f(x))/x)= lim_(x→+∞)  (e^x /x) − x^(e−1)   =lim_(x→+∞)   (e^x /x)( 1− e^(−x) x^e )=lim_(x→+∞)  (e^x /x) =+∞ so the graph   of f have a parabolic diction at +∞  f^′ (x)= e^x  − e x^(e−1)  = e^x  (1− e^(−x+1)  e^((e−1)lnx) )  = e^x ( 1−e^(−x+1 +(e−1)lnx) ) the sine off^′ (x) is thesine of  ψ(x)= 1− e^((e−1)lnx −x+1)   ψ^′ (x)= −( ((e−1)/x) −1) e^((...))  =−( ((e−1−x)/x))e^((...))   =((x−(e−1))/x) e^((...))    and  ψ^′ (x)=0 ⇔  x=e−1 and  f^′ (e−1)=e^(e−1) (1− e^(−e+2)  e^((e−1)ln(e−1)) ).....

$$\left.{we}\:{have}\:{f}\left({x}\right)=\:{e}^{{x}} \:−{e}^{{elnx}} \:\:\Rightarrow\:{D}_{{f}} =\right]\mathrm{0},+\propto\left[\right. \\ $$$${lim}_{{x}\rightarrow\mathrm{0}^{+} } {f}\left({x}\right)=\:\mathrm{1}\:\:\:{and}\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)={lim}_{{x}\rightarrow+\infty} {e}^{{x}} \left(\:\mathrm{1}−{e}^{−{x}+{elnx}} \right) \\ $$$$={lim}_{{x}\rightarrow+\infty} \:{e}^{{x}} \left(\mathrm{1}\:−{e}^{−{x}\left(\mathrm{1}−\frac{{elnx}}{{x}}\right)} \right)={lim}\:_{{x}\rightarrow+\infty^{} } \:\:{e}^{{x}} =+\infty \\ $$$${lim}_{{x}\rightarrow+\infty} \:\frac{{f}\left({x}\right)}{{x}}=\:{lim}_{{x}\rightarrow+\infty} \:\frac{{e}^{{x}} }{{x}}\:−\:{x}^{{e}−\mathrm{1}} \\ $$$$={lim}_{{x}\rightarrow+\infty} \:\:\frac{{e}^{{x}} }{{x}}\left(\:\mathrm{1}−\:{e}^{−{x}} {x}^{{e}} \right)={lim}_{{x}\rightarrow+\infty} \:\frac{{e}^{{x}} }{{x}}\:=+\infty\:{so}\:{the}\:{graph}\: \\ $$$${of}\:{f}\:{have}\:{a}\:{parabolic}\:{diction}\:{at}\:+\infty \\ $$$${f}^{'} \left({x}\right)=\:{e}^{{x}} \:−\:{e}\:{x}^{{e}−\mathrm{1}} \:=\:{e}^{{x}} \:\left(\mathrm{1}−\:{e}^{−{x}+\mathrm{1}} \:{e}^{\left({e}−\mathrm{1}\right){lnx}} \right) \\ $$$$=\:{e}^{{x}} \left(\:\mathrm{1}−{e}^{−{x}+\mathrm{1}\:+\left({e}−\mathrm{1}\right){lnx}} \right)\:{the}\:{sine}\:{off}^{'} \left({x}\right)\:{is}\:{thesine}\:{of} \\ $$$$\psi\left({x}\right)=\:\mathrm{1}−\:{e}^{\left({e}−\mathrm{1}\right){lnx}\:−{x}+\mathrm{1}} \\ $$$$\psi^{'} \left({x}\right)=\:−\left(\:\frac{{e}−\mathrm{1}}{{x}}\:−\mathrm{1}\right)\:{e}^{\left(...\right)} \:=−\left(\:\frac{{e}−\mathrm{1}−{x}}{{x}}\right){e}^{\left(...\right)} \\ $$$$=\frac{{x}−\left({e}−\mathrm{1}\right)}{{x}}\:{e}^{\left(...\right)} \:\:\:{and}\:\:\psi^{'} \left({x}\right)=\mathrm{0}\:\Leftrightarrow\:\:{x}={e}−\mathrm{1}\:{and} \\ $$$${f}^{'} \left({e}−\mathrm{1}\right)={e}^{{e}−\mathrm{1}} \left(\mathrm{1}−\:{e}^{−{e}+\mathrm{2}} \:{e}^{\left({e}−\mathrm{1}\right){ln}\left({e}−\mathrm{1}\right)} \right)..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com