Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 28151 by tawa tawa last updated on 21/Jan/18

lim_(x→1)   ((1/(log_e x)) − (x/(x − 1)))

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\:\left(\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{e}} \mathrm{x}}\:−\:\frac{\mathrm{x}}{\mathrm{x}\:−\:\mathrm{1}}\right) \\ $$

Commented by çhëý böý last updated on 21/Jan/18

lim_(x→1)  ((((x−1)−xlnx)/((x−1)lnx)))=(0/0)  lim_(x→1)  (((x−((x/x)+lnx))/(lnx+(((x−1))/( x )))))  lim_(x→1 )   (((x(x−1+1nx))/(xlnx+(x−1))))=(0/0)  lim_(x→1)  ((((x−1+lnx)+x(1−0+(1/x)))/(1+lnx+1)))  lim_(x→1)  (((0+0+2)/(1+0+1)))=(2/2)=1

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left(\frac{\left({x}−\mathrm{1}\right)−{xlnx}}{\left({x}−\mathrm{1}\right){lnx}}\right)=\frac{\mathrm{0}}{\mathrm{0}} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left(\frac{{x}−\left(\frac{{x}}{{x}}+{lnx}\right)}{{lnx}+\frac{\left({x}−\mathrm{1}\right)}{\:{x}\:}}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{1}\:} {\mathrm{lim}}\:\:\left(\frac{{x}\left({x}−\mathrm{1}+\mathrm{1}{nx}\right)}{{xlnx}+\left({x}−\mathrm{1}\right)}\right)=\frac{\mathrm{0}}{\mathrm{0}} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left(\frac{\left({x}−\mathrm{1}+{lnx}\right)+{x}\left(\mathrm{1}−\mathrm{0}+\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}+{lnx}+\mathrm{1}}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left(\frac{\mathrm{0}+\mathrm{0}+\mathrm{2}}{\mathrm{1}+\mathrm{0}+\mathrm{1}}\right)=\frac{\mathrm{2}}{\mathrm{2}}=\mathrm{1} \\ $$

Commented by tawa tawa last updated on 21/Jan/18

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by abdo imad last updated on 21/Jan/18

=lim_(x→1)  ( (1/(lnx)) −(x/(x−1))) let use the ch.x−1=t  x→1⇔ t→o   lim(...)= lim_(t→0) ((1/(ln(1+t))) −((1+t)/t))  =lim_(t→0)  ((t −(1+t)ln(1+t))/(tln(1+t)))let take f(t)=t −(1+t)ln(1+t)  and g(t)=tln(1+t) we have   f^′ (t)= 1−(ln(1+t)+1)=−ln(1+t) and f^(′′) (t) =((−1)/(1+t))  g^′ (t)=ln(1+t) +(t/(1+t))=ln(1+t) +1−(1/(1+t)) and  g^(′′) (t)= (1/(1+t)) +(1/((1+t)^2 ))  so  lim_(x→1) ((1/(lnx)) −(x/(x−1)))=lim_(t→0)   ((f^(′′) (t))/(g^(′′) (t))) =  ((−1)/2) .

$$={lim}_{{x}\rightarrow\mathrm{1}} \:\left(\:\frac{\mathrm{1}}{{lnx}}\:−\frac{{x}}{{x}−\mathrm{1}}\right)\:{let}\:{use}\:{the}\:{ch}.{x}−\mathrm{1}={t} \\ $$$${x}\rightarrow\mathrm{1}\Leftrightarrow\:{t}\rightarrow{o}\:\:\:{lim}\left(...\right)=\:{lim}_{{t}\rightarrow\mathrm{0}} \left(\frac{\mathrm{1}}{{ln}\left(\mathrm{1}+{t}\right)}\:−\frac{\mathrm{1}+{t}}{{t}}\right) \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}} \:\frac{{t}\:−\left(\mathrm{1}+{t}\right){ln}\left(\mathrm{1}+{t}\right)}{{tln}\left(\mathrm{1}+{t}\right)}{let}\:{take}\:{f}\left({t}\right)={t}\:−\left(\mathrm{1}+{t}\right){ln}\left(\mathrm{1}+{t}\right) \\ $$$${and}\:{g}\left({t}\right)={tln}\left(\mathrm{1}+{t}\right)\:{we}\:{have}\: \\ $$$${f}^{'} \left({t}\right)=\:\mathrm{1}−\left({ln}\left(\mathrm{1}+{t}\right)+\mathrm{1}\right)=−{ln}\left(\mathrm{1}+{t}\right)\:{and}\:{f}^{''} \left({t}\right)\:=\frac{−\mathrm{1}}{\mathrm{1}+{t}} \\ $$$${g}^{'} \left({t}\right)={ln}\left(\mathrm{1}+{t}\right)\:+\frac{{t}}{\mathrm{1}+{t}}={ln}\left(\mathrm{1}+{t}\right)\:+\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{t}}\:{and} \\ $$$${g}^{''} \left({t}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{t}}\:+\frac{\mathrm{1}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }\:\:{so} \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} \left(\frac{\mathrm{1}}{{lnx}}\:−\frac{{x}}{{x}−\mathrm{1}}\right)={lim}_{{t}\rightarrow\mathrm{0}} \:\:\frac{{f}^{''} \left({t}\right)}{{g}^{''} \left({t}\right)}\:=\:\:\frac{−\mathrm{1}}{\mathrm{2}}\:. \\ $$

Commented by abdo imad last updated on 21/Jan/18

we have used hospital theorem.

$${we}\:{have}\:{used}\:{hospital}\:{theorem}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com