All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 28159 by abdo imad last updated on 21/Jan/18
letgiveD=[0,π2]×[0,12]findthevalueof∫∫Ddxdyycosx+1.
Commented by abdo imad last updated on 26/Jan/18
letputI=∫∫Ddxdyycosx+1I=∫0π2(∫012dyycox+1)dx=∫0π2[ln(ycosx+1)]y=0y=12dxcosx=∫0π2ln(1+12cosx)cosxdxandbyfubiniI=∫012(∫0π2dxycosx+1)dythech.tan(x2)=tgive∫0π2dxycosx+1=∫0111+y1−t21+t22dt1+t2=∫012dt1+t2+y(1−t2)=∫012dt(1−y)t2+1+y=21−y∫01dtt2+1+y1−y(ch.t=1+y1−yu)=21−y∫01−y1+y11+y1−y(1+u2)1+y1−ydu=21+y.1+y1−yartan(1−y1+y)=21−y2arctan(1−y1+y)=2sinθarctan(tan(θ2))(ch.y=cosθ)=θsinθ=arcosy1−y2⇒I=∫012arcosy1−y2dybypartsI=[−arcosy.arcosy]012−∫012−arcosy−dy1−y22I=(π2)2−(π3)2=π24−π29=5π236andI=5π272.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com