Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28159 by abdo imad last updated on 21/Jan/18

let give D=[0,(π/2)]×[0,(1/2)]  find the value of  ∫∫_D    ((dxdy)/(ycosx +1))  .

letgiveD=[0,π2]×[0,12]findthevalueofDdxdyycosx+1.

Commented by abdo imad last updated on 26/Jan/18

let put  I=∫∫_D  ((dxdy)/(ycosx +1))  I= ∫_0 ^(π/2) ( ∫_0 ^(1/2)     (dy/(ycox+1)))dx = ∫_0 ^(π/2) [ ln(ycosx+1)]_(y=0) ^(y=(1/2)) (dx/(cosx))  = ∫_0 ^(π/2) ((ln(1+(1/2)cosx))/(cosx))dx  and by fubini  I= ∫_0 ^(1/2) ( ∫_0 ^(π/2)    (dx/(ycosx +1)))dy the ch. tan((x/2))=t give  ∫_0 ^(π/2)   (dx/(ycosx+1))= ∫_0 ^1  (1/(1+y((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  = ∫_0 ^1       ((2dt)/(1+t^2  +y(1−t^(2)) ))= ∫_0 ^1      ((2dt)/((1−y)t^2 +1+y))  = (2/(1−y)) ∫_0 ^1     (dt/(t^2  +((1+y)/(1−y))))      (      ch.t=(√((1+y)/(1−y)))u)  = (2/(1−y)) ∫_0 ^(√((1−y)/(1+y)))        (1/(((1+y)/(1−y))(1+u^2 )))(√(  ((1+y)/(1−y))))du  = (2/(1+y)) .((√(1+y))/(√(1−y))) artan((√((1−y)/(1+y))))= (2/(√(1−y^2 ))) arctan((√((1−y)/(1+y))))  = (2/(sinθ)) arctan(tan((θ/2)))   (ch.y=cosθ)  =(θ/(sinθ)) =((arcosy)/(√(1−y^2 )))  ⇒ I= ∫_0 ^(1/2)    ((arcosy)/(√(1−y^2 )))dy   by parts  I=  [−arcosy.arcosy]_0 ^(1/2)  − ∫_0 ^(1/2) −arcosy ((−dy)/(√(1−y^2 )))  2I= ((π/2))^2  −((π/3))^2 = (π^2 /4)− (π^2 /9)= ((5π^2 )/(36))  and  I= ((5π^2 )/(72)) .

letputI=Ddxdyycosx+1I=0π2(012dyycox+1)dx=0π2[ln(ycosx+1)]y=0y=12dxcosx=0π2ln(1+12cosx)cosxdxandbyfubiniI=012(0π2dxycosx+1)dythech.tan(x2)=tgive0π2dxycosx+1=0111+y1t21+t22dt1+t2=012dt1+t2+y(1t2)=012dt(1y)t2+1+y=21y01dtt2+1+y1y(ch.t=1+y1yu)=21y01y1+y11+y1y(1+u2)1+y1ydu=21+y.1+y1yartan(1y1+y)=21y2arctan(1y1+y)=2sinθarctan(tan(θ2))(ch.y=cosθ)=θsinθ=arcosy1y2I=012arcosy1y2dybypartsI=[arcosy.arcosy]012012arcosydy1y22I=(π2)2(π3)2=π24π29=5π236andI=5π272.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com