All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 28160 by abdo imad last updated on 21/Jan/18
find∫∫DxydxdywithD={(x,y)∈R/(x2+y2)2⩽xy}
Commented by abdo imad last updated on 26/Jan/18
letputI=∫∫Dxydxdyletusehech.x=rcosθandy=rsinθ⇒0<r4<r2cosθsinθ⇒0<r2<12sin(2θ)sowemusthavesin(2θ)>0⇒0<θ<π2and0<r<12sin(2θ)I=∫0π2(∫012sin(2θ)r2sinθcosθrdr)dθ=12∫0π2(∫012sin(2θ)r2dr)sin(2θ)dθ=132∫0π2[r3]012sin(2θ)sin(2θ)dθ=132∫0π2(12sin(2θ)12sin(2θ))sin(2θ))dθ=112∫0π2sin2(2θ)dθ=112∫0π21−cos(4θ)2dθ
I=π48−124∫0π2cos(4θ)dθ=π48−14×24[sin(4θ)]0π2=π48−0⇒I=π48.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com