Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28160 by abdo imad last updated on 21/Jan/18

find ∫∫_D   (√(xy)) dxdy with D={(x,y)∈R^  /(x^2 +y^2 )^2 ≤xy}

$${find}\:\int\int_{{D}} \:\:\sqrt{{xy}}\:{dxdy}\:{with}\:{D}=\left\{\left({x},{y}\right)\in{R}^{} \:/\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{2}} \leqslant{xy}\right\} \\ $$

Commented by abdo imad last updated on 26/Jan/18

let put  I= ∫∫_D (√(xy)) dxdy   let use he ch. x=rcosθ and  y= rsinθ  ⇒ 0<r^4 < r^2 cosθ sinθ ⇒0 <r^2 < (1/2)sin(2θ)  so we must have sin(2θ) >0 ⇒  0<θ< (π/2) and  0<r< (1/(√2))(√(sin(2θ)))   I =  ∫_0 ^(π/2) ( ∫_0 ^((1/(√2))(√(sin(2θ)))) (√(r^2 sinθ cosθ)) rdr)dθ  =(1/(√2))∫_0 ^(π/2)  ( ∫_0 ^((1/(√2))(√(sin(2θ))))  r^2 dr)(√(sin(2θ))) dθ  =(1/(3(√2))) ∫_0 ^(π/2) [ r^3 ]_0 ^((1/(√2))(√(sin(2θ)))) (√(sin(2θ)))dθ   =(1/(3(√2))) ∫_0 ^(π/2) ((1/2) sin(2θ)(1/(√2))(√(sin(2θ))) )(√(sin(2θ))))dθ  = (1/(12)) ∫_0 ^(π/2)  sin^2 (2θ)dθ=(1/(12)) ∫_0 ^(π/2)  ((1−cos(4θ))/2)dθ

$${let}\:{put}\:\:{I}=\:\int\int_{{D}} \sqrt{{xy}}\:{dxdy}\:\:\:{let}\:{use}\:{he}\:{ch}.\:{x}={rcos}\theta\:{and} \\ $$$${y}=\:{rsin}\theta\:\:\Rightarrow\:\mathrm{0}<{r}^{\mathrm{4}} <\:{r}^{\mathrm{2}} {cos}\theta\:{sin}\theta\:\Rightarrow\mathrm{0}\:<{r}^{\mathrm{2}} <\:\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\mathrm{2}\theta\right) \\ $$$${so}\:{we}\:{must}\:{have}\:{sin}\left(\mathrm{2}\theta\right)\:>\mathrm{0}\:\Rightarrow\:\:\mathrm{0}<\theta<\:\frac{\pi}{\mathrm{2}}\:{and} \\ $$$$\mathrm{0}<{r}<\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\sqrt{{sin}\left(\mathrm{2}\theta\right)}\: \\ $$$${I}\:=\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\sqrt{{sin}\left(\mathrm{2}\theta\right)}} \sqrt{{r}^{\mathrm{2}} {sin}\theta\:{cos}\theta}\:{rdr}\right){d}\theta \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left(\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\sqrt{{sin}\left(\mathrm{2}\theta\right)}} \:{r}^{\mathrm{2}} {dr}\right)\sqrt{{sin}\left(\mathrm{2}\theta\right)}\:{d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[\:{r}^{\mathrm{3}} \right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\sqrt{{sin}\left(\mathrm{2}\theta\right)}} \sqrt{{sin}\left(\mathrm{2}\theta\right)}{d}\theta \\ $$$$\left.\:=\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{1}}{\mathrm{2}}\:{sin}\left(\mathrm{2}\theta\right)\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\sqrt{{sin}\left(\mathrm{2}\theta\right)}\:\right)\sqrt{{sin}\left(\mathrm{2}\theta\right)}\right){d}\theta \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{12}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{2}} \left(\mathrm{2}\theta\right){d}\theta=\frac{\mathrm{1}}{\mathrm{12}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}−{cos}\left(\mathrm{4}\theta\right)}{\mathrm{2}}{d}\theta \\ $$

Commented by abdo imad last updated on 26/Jan/18

I= (π/(48)) −(1/(24)) ∫_0 ^(π/2)  cos(4θ)dθ= (π/(48))  − (1/(4×24))[sin(4θ)]_0 ^(π/2) =(π/(48)) −0  ⇒  I= (π/(48)) .

$${I}=\:\frac{\pi}{\mathrm{48}}\:−\frac{\mathrm{1}}{\mathrm{24}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{4}\theta\right){d}\theta=\:\frac{\pi}{\mathrm{48}}\:\:−\:\frac{\mathrm{1}}{\mathrm{4}×\mathrm{24}}\left[{sin}\left(\mathrm{4}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\frac{\pi}{\mathrm{48}}\:−\mathrm{0} \\ $$$$\Rightarrow\:\:{I}=\:\frac{\pi}{\mathrm{48}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com