Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 28186 by Tinkutara last updated on 25/Jan/18

Find the number of positive integers  x such that [(x/(m−1))]=[(x/(m+1))], for a  particular integer m≥2.  [ ] means G.I.F.

$${Find}\:{the}\:{number}\:{of}\:{positive}\:{integers} \\ $$$${x}\:{such}\:{that}\:\left[\frac{{x}}{{m}−\mathrm{1}}\right]=\left[\frac{{x}}{{m}+\mathrm{1}}\right],\:{for}\:{a} \\ $$$${particular}\:{integer}\:{m}\geqslant\mathrm{2}. \\ $$$$\left[\:\right]\:{means}\:{G}.{I}.{F}. \\ $$

Commented by abdo imad last updated on 25/Jan/18

 if 0<x<m−1⇒0< (x/(m−1))<1   and  0<x<m+1  ⇒ [(x/(m−1))]=[(x/(m+1))]=0 let suppose x ≥m−1≥1  x=q(m−1) +r and q ,r integers 0≤r<m−1  (x/(m−1))=q +(r/(m−1)) ⇒[(x/(m−1))]=q+[(r/(m−1))]=q+0=q  (x/(m+1))=((q(m−1)+r)/(m+1)) = ((q(m+1)−2q +r)/(m+1))=q + ((r−2q)/(m+1)) and  [(x/(m+1))]=q +[((r−2q)/(m+1))]    e ⇔q=q +[((r−2q)/(m+1))]⇔ [((r−2q)/(m+1))]=0 ⇔0≤ ((r−2q)/(m+1))<1  ⇔0≤ r−2q<m+1  but x = qm−q +r=q(m+1)+r−2q  ⇒r−2q=x −q(m+1)⇒0≤x −q(m+1)<m+1  ⇒q(m+1)≤x<(q+1)(m+1)....

$$\:{if}\:\mathrm{0}<{x}<{m}−\mathrm{1}\Rightarrow\mathrm{0}<\:\frac{{x}}{{m}−\mathrm{1}}<\mathrm{1}\:\:\:{and}\:\:\mathrm{0}<{x}<{m}+\mathrm{1} \\ $$$$\Rightarrow\:\left[\frac{{x}}{{m}−\mathrm{1}}\right]=\left[\frac{{x}}{{m}+\mathrm{1}}\right]=\mathrm{0}\:{let}\:{suppose}\:{x}\:\geqslant{m}−\mathrm{1}\geqslant\mathrm{1} \\ $$$${x}={q}\left({m}−\mathrm{1}\right)\:+{r}\:{and}\:{q}\:,{r}\:{integers}\:\mathrm{0}\leqslant{r}<{m}−\mathrm{1} \\ $$$$\frac{{x}}{{m}−\mathrm{1}}={q}\:+\frac{{r}}{{m}−\mathrm{1}}\:\Rightarrow\left[\frac{{x}}{{m}−\mathrm{1}}\right]={q}+\left[\frac{{r}}{{m}−\mathrm{1}}\right]={q}+\mathrm{0}={q} \\ $$$$\frac{{x}}{{m}+\mathrm{1}}=\frac{{q}\left({m}−\mathrm{1}\right)+{r}}{{m}+\mathrm{1}}\:=\:\frac{{q}\left({m}+\mathrm{1}\right)−\mathrm{2}{q}\:+{r}}{{m}+\mathrm{1}}={q}\:+\:\frac{{r}−\mathrm{2}{q}}{{m}+\mathrm{1}}\:{and} \\ $$$$\left[\frac{{x}}{{m}+\mathrm{1}}\right]={q}\:+\left[\frac{{r}−\mathrm{2}{q}}{{m}+\mathrm{1}}\right]\:\: \\ $$$${e}\:\Leftrightarrow{q}={q}\:+\left[\frac{{r}−\mathrm{2}{q}}{{m}+\mathrm{1}}\right]\Leftrightarrow\:\left[\frac{{r}−\mathrm{2}{q}}{{m}+\mathrm{1}}\right]=\mathrm{0}\:\Leftrightarrow\mathrm{0}\leqslant\:\frac{{r}−\mathrm{2}{q}}{{m}+\mathrm{1}}<\mathrm{1} \\ $$$$\Leftrightarrow\mathrm{0}\leqslant\:{r}−\mathrm{2}{q}<{m}+\mathrm{1}\:\:{but}\:{x}\:=\:{qm}−{q}\:+{r}={q}\left({m}+\mathrm{1}\right)+{r}−\mathrm{2}{q} \\ $$$$\Rightarrow{r}−\mathrm{2}{q}={x}\:−{q}\left({m}+\mathrm{1}\right)\Rightarrow\mathrm{0}\leqslant{x}\:−{q}\left({m}+\mathrm{1}\right)<{m}+\mathrm{1} \\ $$$$\Rightarrow{q}\left({m}+\mathrm{1}\right)\leqslant{x}<\left({q}+\mathrm{1}\right)\left({m}+\mathrm{1}\right).... \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com