Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 28190 by ajfour last updated on 21/Jan/18

Commented by ajfour last updated on 21/Jan/18

Q. 28188   (solution)  find least value of [∣z_1 +z_2 ∣]+1  if  z_1 , z_2 , z_3 , z_4  are roots of  z^4 +z^3 +z^2 +z+1=0  .

$${Q}.\:\mathrm{28188}\:\:\:\left({solution}\right) \\ $$$${find}\:{least}\:{value}\:{of}\:\left[\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid\right]+\mathrm{1} \\ $$$${if}\:\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} ,\:{z}_{\mathrm{4}} \:{are}\:{roots}\:{of} \\ $$$${z}^{\mathrm{4}} +{z}^{\mathrm{3}} +{z}^{\mathrm{2}} +{z}+\mathrm{1}=\mathrm{0}\:\:. \\ $$

Commented by abdo imad last updated on 21/Jan/18

e)⇔ z^5 =1 and z≠1 the roots of the polynomial z^5 −1=0  are z_k = e^(i((2kπ)/5))  with k∈[[1 ,4]] if we take z_1 =e^(i((2π)/5))  and  z_2 =^  e^(i((4π)/5))  we have  z_2 = e^(i(π−(π/5))) =−z_1 ^−   ⇒z_1  +z_2 =2i Im(z_1 )  = 2i sin( ((2π)/5))  and ∣z_1 +z_2 ∣= 2sin(2(π/5))and  [∣z_1 +z_2 ∣]+1= [2sin(((2π)/(5))))]+1   but we know that  cos((π/5))= ((1+(√5))/4)  ⇒sin((π/5))=(√( 1−(((1+(√(5)^2 )))/(16))))  =((√(16−(6+2(√5))))/4)= ((√(10−2(√5)))/4) and  sin(((2π)/5))=2sin((π/5))cos((π/5))=2 ((√(10−2(√5)))/4) ((1+(√5))/4)  =(((1+(√(5)))(√(10−2(√5))))/8) ⇒2sin(((2π)/5))= (((1+(√5))(√(10−2(√5))))/4)  = ((√((6+2(√5))(10−2(√5))))/4)=((√(60−12(√5)+20(√5)−20))/4)  =((√(40+8(√5)))/4) =((√(10+2(√5)))/2)=(√((5/2) +((√5)/2)))=(√((5+(√5))/2))   ∼(√(3,5))  but  we have    1<(√(3,5))<2 ⇒[(√(3,5)) ]=1 so  [∣z_1 +z_2 ∣]+1=2  .

$$\left.{e}\right)\Leftrightarrow\:{z}^{\mathrm{5}} =\mathrm{1}\:{and}\:{z}\neq\mathrm{1}\:{the}\:{roots}\:{of}\:{the}\:{polynomial}\:{z}^{\mathrm{5}} −\mathrm{1}=\mathrm{0} \\ $$$${are}\:{z}_{{k}} =\:{e}^{{i}\frac{\mathrm{2}{k}\pi}{\mathrm{5}}} \:{with}\:{k}\in\left[\left[\mathrm{1}\:,\mathrm{4}\right]\right]\:{if}\:{we}\:{take}\:{z}_{\mathrm{1}} ={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{5}}} \:{and} \\ $$$${z}_{\mathrm{2}} =^{} \:{e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{5}}} \:{we}\:{have}\:\:{z}_{\mathrm{2}} =\:{e}^{{i}\left(\pi−\frac{\pi}{\mathrm{5}}\right)} =−{z}_{\mathrm{1}} ^{−} \:\:\Rightarrow{z}_{\mathrm{1}} \:+{z}_{\mathrm{2}} =\mathrm{2}{i}\:{Im}\left({z}_{\mathrm{1}} \right) \\ $$$$=\:\mathrm{2}{i}\:{sin}\left(\:\frac{\mathrm{2}\pi}{\mathrm{5}}\right)\:\:{and}\:\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid=\:\mathrm{2}{sin}\left(\mathrm{2}\frac{\pi}{\mathrm{5}}\right){and} \\ $$$$\left[\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid\right]+\mathrm{1}=\:\left[\mathrm{2}{sin}\left(\frac{\mathrm{2}\pi}{\left.\mathrm{5}\right)}\right)\right]+\mathrm{1}\:\:\:{but}\:{we}\:{know}\:{that} \\ $$$${cos}\left(\frac{\pi}{\mathrm{5}}\right)=\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}}\:\:\Rightarrow{sin}\left(\frac{\pi}{\mathrm{5}}\right)=\sqrt{\:\mathrm{1}−\frac{\left(\mathrm{1}+\sqrt{\left.\mathrm{5}\right)^{\mathrm{2}} }\right.}{\mathrm{16}}} \\ $$$$=\frac{\sqrt{\mathrm{16}−\left(\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}\right)}}{\mathrm{4}}=\:\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{4}}\:{and} \\ $$$${sin}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)=\mathrm{2}{sin}\left(\frac{\pi}{\mathrm{5}}\right){cos}\left(\frac{\pi}{\mathrm{5}}\right)=\mathrm{2}\:\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{4}}\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$=\frac{\left(\mathrm{1}+\sqrt{\left.\mathrm{5}\right)}\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}\right.}{\mathrm{8}}\:\Rightarrow\mathrm{2}{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)=\:\frac{\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{4}} \\ $$$$=\:\frac{\sqrt{\left(\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}\right)\left(\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}\right)}}{\mathrm{4}}=\frac{\sqrt{\mathrm{60}−\mathrm{12}\sqrt{\mathrm{5}}+\mathrm{20}\sqrt{\mathrm{5}}−\mathrm{20}}}{\mathrm{4}} \\ $$$$=\frac{\sqrt{\mathrm{40}+\mathrm{8}\sqrt{\mathrm{5}}}}{\mathrm{4}}\:=\frac{\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}}=\sqrt{\frac{\mathrm{5}}{\mathrm{2}}\:+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}}=\sqrt{\frac{\mathrm{5}+\sqrt{\mathrm{5}}}{\mathrm{2}}}\:\:\:\sim\sqrt{\mathrm{3},\mathrm{5}}\:\:{but} \\ $$$${we}\:{have}\:\:\:\:\mathrm{1}<\sqrt{\mathrm{3},\mathrm{5}}<\mathrm{2}\:\Rightarrow\left[\sqrt{\mathrm{3},\mathrm{5}}\:\right]=\mathrm{1}\:{so} \\ $$$$\left[\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid\right]+\mathrm{1}=\mathrm{2}\:\:. \\ $$

Answered by ajfour last updated on 21/Jan/18

((1−z^5 )/(1−z))=0  so z_1 , z_2 , z_3 , z_4 , 1 are roots of  z^5 =1   (fifth roots of unity)  Least value of ∣z_1 +z_2 ∣=2cos 72°     =2sin 18° < 2sin 30°   (=1)  So least value of [∣z_1 +z_2 ∣]+1=1 .

$$\frac{\mathrm{1}−{z}^{\mathrm{5}} }{\mathrm{1}−{z}}=\mathrm{0} \\ $$$${so}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} ,\:{z}_{\mathrm{4}} ,\:\mathrm{1}\:{are}\:{roots}\:{of} \\ $$$${z}^{\mathrm{5}} =\mathrm{1}\:\:\:\left({fifth}\:{roots}\:{of}\:{unity}\right) \\ $$$${Least}\:{value}\:{of}\:\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid=\mathrm{2cos}\:\mathrm{72}° \\ $$$$\:\:\:=\mathrm{2sin}\:\mathrm{18}°\:<\:\mathrm{2sin}\:\mathrm{30}°\:\:\:\left(=\mathrm{1}\right) \\ $$$${So}\:{least}\:{value}\:{of}\:\left[\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid\right]+\mathrm{1}=\mathrm{1}\:. \\ $$$$ \\ $$

Commented by ajfour last updated on 24/Jan/18

German or Indian Sir ?

$${German}\:{or}\:{Indian}\:{Sir}\:? \\ $$

Commented by math solver last updated on 24/Jan/18

thank you so much sir !

$${thank}\:{you}\:{so}\:{much}\:{sir}\:! \\ $$

Commented by math solver last updated on 22/Jan/18

2cos 72 °kaise aayi least value ?

$$\mathrm{2}{cos}\:\mathrm{72}\:°{kaise}\:{aayi}\:{least}\:{value}\:? \\ $$

Commented by ajfour last updated on 22/Jan/18

to get least value of ∣z_1 +z_2 ∣  we have to choose (see diagram)  such z_i  and z_j  that the manitude  of their resultant is least  as closer to 180° as can be.  here we can only have 144° .  then   ∣z_1 +z_3 ∣=∣z_1 +z_4 ∣=∣z_2 +z_4 ∣  all equal  2cos 72° .  other pairs of z_i , z_j  yield  greater values of ∣z_i +z_j ∣ .

$${to}\:{get}\:{least}\:{value}\:{of}\:\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid \\ $$$${we}\:{have}\:{to}\:{choose}\:\left({see}\:{diagram}\right) \\ $$$${such}\:{z}_{{i}} \:{and}\:{z}_{{j}} \:{that}\:{the}\:{manitude} \\ $$$${of}\:{their}\:{resultant}\:{is}\:{least} \\ $$$${as}\:{closer}\:{to}\:\mathrm{180}°\:{as}\:{can}\:{be}. \\ $$$${here}\:{we}\:{can}\:{only}\:{have}\:\mathrm{144}°\:. \\ $$$${then}\:\:\:\mid{z}_{\mathrm{1}} +{z}_{\mathrm{3}} \mid=\mid{z}_{\mathrm{1}} +{z}_{\mathrm{4}} \mid=\mid{z}_{\mathrm{2}} +{z}_{\mathrm{4}} \mid \\ $$$${all}\:{equal}\:\:\mathrm{2cos}\:\mathrm{72}°\:. \\ $$$${other}\:{pairs}\:{of}\:{z}_{{i}} ,\:{z}_{{j}} \:{yield} \\ $$$${greater}\:{values}\:{of}\:\mid{z}_{{i}} +{z}_{{j}} \mid\:. \\ $$

Commented by math solver last updated on 22/Jan/18

sorry sir , i m still not getting  2cos72° .

$${sorry}\:{sir}\:,\:{i}\:{m}\:{still}\:{not}\:{getting} \\ $$$$\mathrm{2}{cos}\mathrm{72}°\:. \\ $$

Commented by mrW2 last updated on 23/Jan/18

Commented by math solver last updated on 24/Jan/18

hey , r u mrw1 sir ?  the one from germany.

$${hey}\:,\:{r}\:{u}\:{mrw}\mathrm{1}\:{sir}\:? \\ $$$${the}\:{one}\:{from}\:{germany}. \\ $$

Commented by mrW2 last updated on 24/Jan/18

yes sir.  mrW2=mrW1=mrW

$${yes}\:{sir}. \\ $$$${mrW}\mathrm{2}={mrW}\mathrm{1}={mrW} \\ $$

Commented by mrW2 last updated on 24/Jan/18

I′m from Germany Sir.

$${I}'{m}\:{from}\:{Germany}\:{Sir}. \\ $$

Commented by ajfour last updated on 24/Jan/18

Nice to confirm Sir. I had liked   Franz Kafka′s works Sir.  especially ′The Castle′.

$${Nice}\:{to}\:{confirm}\:{Sir}.\:{I}\:{had}\:{liked}\: \\ $$$${Franz}\:{Kafka}'{s}\:{works}\:{Sir}. \\ $$$${especially}\:'{The}\:{Castle}'. \\ $$

Commented by mrW2 last updated on 24/Jan/18

Nice to know that Sir.

$${Nice}\:{to}\:{know}\:{that}\:{Sir}. \\ $$

Commented by abdo imad last updated on 25/Jan/18

are you indian sir ajfour ?  me  i am from morocco...

$${are}\:{you}\:{indian}\:{sir}\:{ajfour}\:?\:\:{me}\:\:{i}\:{am}\:{from}\:{morocco}... \\ $$

Commented by math solver last updated on 25/Jan/18

yes , he is from india.  P.S: i am also an indian :)

$${yes}\:,\:{he}\:{is}\:{from}\:{india}. \\ $$$$\left.{P}.{S}:\:{i}\:{am}\:{also}\:{an}\:{indian}\::\right) \\ $$

Commented by ajfour last updated on 25/Jan/18

never outside India (physically).

$${never}\:{outside}\:{India}\:\left({physically}\right). \\ $$

Commented by abdo imad last updated on 25/Jan/18

nice to know you ajfour ,p.s. prakash jain .mrw....wish you   you good luck....

$${nice}\:{to}\:{know}\:{you}\:{ajfour}\:,{p}.{s}.\:{prakash}\:{jain}\:.{mrw}....{wish}\:{you}\: \\ $$$${you}\:{good}\:{luck}.... \\ $$

Commented by mrW2 last updated on 25/Jan/18

Thanks Sir!

$${Thanks}\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com