All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 28200 by abdo imad last updated on 21/Jan/18
letgiveI=∫01ln(1+x)1+x2dxandJ=∫∫[0,1]2x(1+x2)(1+xy)dxdycalculateJbytwomethodsthenfindthevalueofI.
Commented by abdo imad last updated on 22/Jan/18
wehaveJ=∫01(∫01x1+xydy)dx1+x2but∫01x1+xydy=[ln(1+xy)]y=0y=1=ln(1+x)soJ=∫01ln(1+x)1+x2dxfromanothersideJ=∫01(∫01x(1+x2)(1+xy)dx)dyletdecomposeF(x)=x(1+x2)(1+xy)=α1+xy+ax+b1+x2α=limx→−1y(1+xy)F(x)=−1y(1+1y2)=−1y+1y=−y1+y2limx→+∝xF(x)=0=αy+a⇒a=−αy=11+y2F(x)=−y(1+y2)(1+xy)+11+y2x+b1+x2F(0)=0=−y1+y2+b⇒b=y1+y2andF(x)=−y(1+y2)(1+xy)+11+y2(x+y1+x2)∫01F(x)dx=−11+y2∫01ydx1+xy+12(1+y2)∫012x1+x2dx+y1+y2∫01dx1+x2=−11+y2[ln(1+xy)]x=0x=1+12(1+y2)[ln(1+x2)]01+π4y1+y2−ln(1+y)1+y2+ln22(1+y2)+πy4(1+y2)J=−∫01ln(1+y)1+y2dy+ln22∫01dy1+y2+π8∫012ydy1+y22J=π8ln2+π8ln2=π4ln2⇒J=π8ln2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com