Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 28241 by ajfour last updated on 22/Jan/18

Commented by ajfour last updated on 22/Jan/18

Q. 28185   (alternate solution )

$${Q}.\:\mathrm{28185}\:\:\:\left({alternate}\:{solution}\:\right) \\ $$

Answered by ajfour last updated on 22/Jan/18

x^2 +y^2 −6x+6y−16=0  ⇒   (x−3)^2 +(y+3)^2 =34  slope of MN is m=4  x_M =3+(√(34))×(1/(√(17))) =3+(√2)  y_M =−3+(√(34))×(4/(√(17))) =−3+4(√2)  For point A we solve y=x with  eq. of AM  and so x_A =y_A =α is  α−4(√2)+3=−(α−3−(√2))  ⇒  α=(5/(√2))  ; hence A((5/(√2)),(5/(√2)))  x_N =3−(√(34))×(1/(√(17)))=3−(√2)  y_N =−3−(√(34))×(4/(√(34)))=−3−4(√2)  x_B =y_B =β which we get by  solving y=x  with eq. of BN:    β+3+4(√2)=−(β−3+(√2))  ⇒  β=−(5/(√2)) ;  hence B(−(5/(√2)), (5/(√2)))  center of ellipse is midpoint of  segment AB , so  (0,0) .  and semi major axis length =5  let us take along AB(y=x) our x axis  and y=−x as new y axis   (both downwards +ve)  then eq. of ellipse is  (x^2 /a^2 )+(y^2 /b^2 )=1  , with a=5  slope of  y=4x−15 will become  m=((4−tan π/4)/(1+4tan π/4)) =(3/5)  point (5,5) will become (−5(√2),0)  thus eq. y=4x−15 changes to  y=(3/5)x+5(√2)  as this is to be tangent to ellipse  c^2 =a^2 m^2 +b^2   ⇒  (5(√2))^2 =(25)((3/5))^2 +b^2   b^2 =9  e^2 =1−(b^2 /a^2 ) =1−(9/(25))   e=(4/5)  length of latus rectum     l=((2b^2 )/a) =((2×9)/5) =((18)/5)  with (a/e)=(5/(4/5))=((25)/4)  eq. of directrices pass through  (((25)/(4(√2))), ((25)/(4(√2)))) and (((−25)/(4(√2))), ((−25)/(4(√2))))  and are perpendicular to y=x  So, eqs. are  y−((25)/(4(√2)))=−(x−((25)/(4(√2))))  ⇒   x+y=±((25)/(2(√2))) .

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{6}{y}−\mathrm{16}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\left({y}+\mathrm{3}\right)^{\mathrm{2}} =\mathrm{34} \\ $$$${slope}\:{of}\:{MN}\:{is}\:{m}=\mathrm{4} \\ $$$${x}_{{M}} =\mathrm{3}+\sqrt{\mathrm{34}}×\frac{\mathrm{1}}{\sqrt{\mathrm{17}}}\:=\mathrm{3}+\sqrt{\mathrm{2}} \\ $$$${y}_{{M}} =−\mathrm{3}+\sqrt{\mathrm{34}}×\frac{\mathrm{4}}{\sqrt{\mathrm{17}}}\:=−\mathrm{3}+\mathrm{4}\sqrt{\mathrm{2}} \\ $$$${For}\:{point}\:{A}\:{we}\:{solve}\:{y}={x}\:{with} \\ $$$${eq}.\:{of}\:{AM}\:\:{and}\:{so}\:{x}_{{A}} ={y}_{{A}} =\alpha\:{is} \\ $$$$\alpha−\mathrm{4}\sqrt{\mathrm{2}}+\mathrm{3}=−\left(\alpha−\mathrm{3}−\sqrt{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\:\alpha=\frac{\mathrm{5}}{\sqrt{\mathrm{2}}}\:\:;\:{hence}\:{A}\left(\frac{\mathrm{5}}{\sqrt{\mathrm{2}}},\frac{\mathrm{5}}{\sqrt{\mathrm{2}}}\right) \\ $$$${x}_{{N}} =\mathrm{3}−\sqrt{\mathrm{34}}×\frac{\mathrm{1}}{\sqrt{\mathrm{17}}}=\mathrm{3}−\sqrt{\mathrm{2}} \\ $$$${y}_{{N}} =−\mathrm{3}−\sqrt{\mathrm{34}}×\frac{\mathrm{4}}{\sqrt{\mathrm{34}}}=−\mathrm{3}−\mathrm{4}\sqrt{\mathrm{2}} \\ $$$${x}_{{B}} ={y}_{{B}} =\beta\:{which}\:{we}\:{get}\:{by} \\ $$$${solving}\:{y}={x}\:\:{with}\:{eq}.\:{of}\:{BN}: \\ $$$$\:\:\beta+\mathrm{3}+\mathrm{4}\sqrt{\mathrm{2}}=−\left(\beta−\mathrm{3}+\sqrt{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\:\beta=−\frac{\mathrm{5}}{\sqrt{\mathrm{2}}}\:;\:\:{hence}\:{B}\left(−\frac{\mathrm{5}}{\sqrt{\mathrm{2}}},\:\frac{\mathrm{5}}{\sqrt{\mathrm{2}}}\right) \\ $$$${center}\:{of}\:{ellipse}\:{is}\:{midpoint}\:{of} \\ $$$${segment}\:{AB}\:,\:{so}\:\:\left(\mathrm{0},\mathrm{0}\right)\:. \\ $$$${and}\:{semi}\:{major}\:{axis}\:{length}\:=\mathrm{5} \\ $$$${let}\:{us}\:{take}\:{along}\:{AB}\left({y}={x}\right)\:{our}\:{x}\:{axis} \\ $$$${and}\:{y}=−{x}\:{as}\:{new}\:{y}\:{axis} \\ $$$$\:\left({both}\:{downwards}\:+{ve}\right) \\ $$$${then}\:{eq}.\:{of}\:{ellipse}\:{is} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:,\:{with}\:{a}=\mathrm{5} \\ $$$${slope}\:{of}\:\:{y}=\mathrm{4}{x}−\mathrm{15}\:{will}\:{become} \\ $$$${m}=\frac{\mathrm{4}−\mathrm{tan}\:\pi/\mathrm{4}}{\mathrm{1}+\mathrm{4tan}\:\pi/\mathrm{4}}\:=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$${point}\:\left(\mathrm{5},\mathrm{5}\right)\:{will}\:{become}\:\left(−\mathrm{5}\sqrt{\mathrm{2}},\mathrm{0}\right) \\ $$$${thus}\:{eq}.\:{y}=\mathrm{4}{x}−\mathrm{15}\:{changes}\:{to} \\ $$$${y}=\frac{\mathrm{3}}{\mathrm{5}}{x}+\mathrm{5}\sqrt{\mathrm{2}} \\ $$$${as}\:{this}\:{is}\:{to}\:{be}\:{tangent}\:{to}\:{ellipse} \\ $$$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\left(\mathrm{5}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} =\left(\mathrm{25}\right)\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$${b}^{\mathrm{2}} =\mathrm{9} \\ $$$${e}^{\mathrm{2}} =\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:=\mathrm{1}−\frac{\mathrm{9}}{\mathrm{25}}\: \\ $$$$\boldsymbol{{e}}=\frac{\mathrm{4}}{\mathrm{5}} \\ $$$${length}\:{of}\:{latus}\:{rectum} \\ $$$$\:\:\:\boldsymbol{{l}}=\frac{\mathrm{2}\boldsymbol{{b}}^{\mathrm{2}} }{\boldsymbol{{a}}}\:=\frac{\mathrm{2}×\mathrm{9}}{\mathrm{5}}\:=\frac{\mathrm{18}}{\mathrm{5}} \\ $$$$\boldsymbol{{with}}\:\frac{\boldsymbol{{a}}}{\boldsymbol{{e}}}=\frac{\mathrm{5}}{\mathrm{4}/\mathrm{5}}=\frac{\mathrm{25}}{\mathrm{4}} \\ $$$$\boldsymbol{{eq}}.\:\boldsymbol{{of}}\:\boldsymbol{{directrices}}\:\boldsymbol{{pass}}\:\boldsymbol{{through}} \\ $$$$\left(\frac{\mathrm{25}}{\mathrm{4}\sqrt{\mathrm{2}}},\:\frac{\mathrm{25}}{\mathrm{4}\sqrt{\mathrm{2}}}\right)\:{and}\:\left(\frac{−\mathrm{25}}{\mathrm{4}\sqrt{\mathrm{2}}},\:\frac{−\mathrm{25}}{\mathrm{4}\sqrt{\mathrm{2}}}\right) \\ $$$${and}\:{are}\:{perpendicular}\:{to}\:\boldsymbol{{y}}=\boldsymbol{{x}} \\ $$$$\boldsymbol{{S}}{o},\:{eqs}.\:{are} \\ $$$${y}−\frac{\mathrm{25}}{\mathrm{4}\sqrt{\mathrm{2}}}=−\left({x}−\frac{\mathrm{25}}{\mathrm{4}\sqrt{\mathrm{2}}}\right) \\ $$$$\Rightarrow\:\:\:\boldsymbol{{x}}+\boldsymbol{{y}}=\pm\frac{\mathrm{25}}{\mathrm{2}\sqrt{\mathrm{2}}}\:. \\ $$

Commented by ajfour last updated on 22/Jan/18

MN is tangent to this ellipse  and this is given in question, we  cannot amend that.  from this condition we will  rather find b or hence the  eccenticity.

$${MN}\:{is}\:{tangent}\:{to}\:{this}\:{ellipse} \\ $$$${and}\:{this}\:{is}\:{given}\:{in}\:{question},\:{we} \\ $$$${cannot}\:{amend}\:{that}. \\ $$$${from}\:{this}\:{condition}\:{we}\:{will} \\ $$$${rather}\:{find}\:\boldsymbol{{b}}\:{or}\:{hence}\:{the} \\ $$$${eccenticity}. \\ $$

Commented by mrW2 last updated on 22/Jan/18

I assumed that the tangents from M  and N should at ends of both axes of  the ellipse. This is much more  complicated than what is asked.  I had to read the question more  carefully.

$${I}\:{assumed}\:{that}\:{the}\:{tangents}\:{from}\:{M} \\ $$$${and}\:{N}\:{should}\:{at}\:{ends}\:{of}\:{both}\:{axes}\:{of} \\ $$$${the}\:{ellipse}.\:{This}\:{is}\:{much}\:{more} \\ $$$${complicated}\:{than}\:{what}\:{is}\:{asked}. \\ $$$${I}\:{had}\:{to}\:{read}\:{the}\:{question}\:{more} \\ $$$${carefully}. \\ $$

Commented by ajfour last updated on 22/Jan/18

must be , let me see if i can  follow along that interpretation..

$${must}\:{be}\:,\:{let}\:{me}\:{see}\:{if}\:{i}\:{can} \\ $$$${follow}\:{along}\:{that}\:{interpretation}.. \\ $$

Commented by mrW2 last updated on 23/Jan/18

Is there an easy way to get  c^2 =a^2 m^2 +b^2  ?  I know this is true. But I can derive  it only through a lengthy way:  (...)x^2 +(...)x+(...)=0  Δ=(...)^2 −4(...)(...)=0  ⇒c^2 =a^2 m^2 +b^2

$${Is}\:{there}\:{an}\:{easy}\:{way}\:{to}\:{get} \\ $$$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \:? \\ $$$${I}\:{know}\:{this}\:{is}\:{true}.\:{But}\:{I}\:{can}\:{derive} \\ $$$${it}\:{only}\:{through}\:{a}\:{lengthy}\:{way}: \\ $$$$\left(...\right){x}^{\mathrm{2}} +\left(...\right){x}+\left(...\right)=\mathrm{0} \\ $$$$\Delta=\left(...\right)^{\mathrm{2}} −\mathrm{4}\left(...\right)\left(...\right)=\mathrm{0} \\ $$$$\Rightarrow{c}^{\mathrm{2}} ={a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$

Commented by mrW2 last updated on 23/Jan/18

I got following:  rotated with angle −(π/4) eq. y=4x−15 changes to  ((x+y)/(√2))=((4(x−y))/(√2))−15  ⇒5y=3x−15(√2)  ⇒y=(3/5)x−3(√2)   (but you got y=(3/5)x+5(√2))  (−3(√2))^2 =((3/5)×5)^2 +b^2   ⇒b^2 =9 (you got also b^2 =9)

$${I}\:{got}\:{following}: \\ $$$${rotated}\:{with}\:{angle}\:−\frac{\pi}{\mathrm{4}}\:{eq}.\:{y}=\mathrm{4}{x}−\mathrm{15}\:{changes}\:{to} \\ $$$$\frac{{x}+{y}}{\sqrt{\mathrm{2}}}=\frac{\mathrm{4}\left({x}−{y}\right)}{\sqrt{\mathrm{2}}}−\mathrm{15} \\ $$$$\Rightarrow\mathrm{5}{y}=\mathrm{3}{x}−\mathrm{15}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow{y}=\frac{\mathrm{3}}{\mathrm{5}}{x}−\mathrm{3}\sqrt{\mathrm{2}}\:\:\:\left({but}\:{you}\:{got}\:{y}=\frac{\mathrm{3}}{\mathrm{5}}{x}+\mathrm{5}\sqrt{\mathrm{2}}\right) \\ $$$$\left(−\mathrm{3}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} =\left(\frac{\mathrm{3}}{\mathrm{5}}×\mathrm{5}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$\Rightarrow{b}^{\mathrm{2}} =\mathrm{9}\:\left({you}\:{got}\:{also}\:{b}^{\mathrm{2}} =\mathrm{9}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com