Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 28258 by abdo imad last updated on 22/Jan/18

let give A  = ( 1       1 )                             (  2    −1)    find  e^(A )     and   e^(−tA) .

$${let}\:{give}\:{A}\:\:=\:\left(\:\mathrm{1}\:\:\:\:\:\:\:\mathrm{1}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\mathrm{2}\:\:\:\:−\mathrm{1}\right) \\ $$$$\:\:{find}\:\:{e}^{{A}\:} \:\:\:\:{and}\:\:\:{e}^{−{tA}} .\:\: \\ $$

Commented by abdo imad last updated on 23/Jan/18

e^A = Σ_(n=0) ^∝   (A^n /(n!))   let  find  A^n  the carscteristic polynomial  of  A  is P_c (A)=det(A −XI)= determinant (((1−X       1)),((2           −1−X)))  =−(1−X^2 ) −2= X^2 −3 =(X−(√3))(X +(√(3)))  so the proper values of A?are λ_1 =(√3)  and λ_2 =−(√3)  V(λ_1 ) =ker(A −λ_1 I)  u(x,y)∈V(λ_1 )⇔ (A −λ_1 I)u=0   (((1−(√3)        1)),((2        −2−(√3))) )   ((x),(y) ) = (((o )),(o) )   after cslculus we find  V( λ_1 )= D_e_(1 )    with e_1  ((1),((−(1−(√3)))) )    V(λ_2 )=ker(A −λ_(2 ) I)  u(x,y)∈V(λ_2 )  ⇔ (A −λ_2 I)u=0  ⇔ (((1+(√3)       1)),((2         −1+(√3))) )   ((x),(y) ) = ((0),(0) ) after calculus we find  V(λ_2 )= D_e_2       with  e_2  ((1),((−(1+(√(3))))) )   so the diagonal  mstrix is D=  ((((√3)         0 )),((0          −(√3_ ))) )  and  the inversible  matrix id  P=    (((1                                  1)),((−(1−(√3)       −(1+(√3)  )    )) )  we have  P^(−1)    =((tran(com P))/(detP))  .   com(P)= (−1)^(i+j)  a_(ij)   we find  P^(−1) = (1/(2(√3)))  (((1+(√3)                 1)),((−(1−(√(3)))       −1)) )   we have A =PDP^(−1)    ⇒  A^n = P D^n P^(−1)   after all calculus we find      A^n    =(1/(2(√3)))        (     ((√3)  )^n (1+(√3))−(−(√3))^n (1−(√3))           ((√3))^n  −(−(√3))^n     )                            (   2 ((√3))^n    −2(−(√3))^n                 −(1−(√3))((√3))^n   +(1+(√3)) (−(√3))^n      )   .                       we have  e^A   = Σ_(n=0) ^∝   (A^n /(n!))  and  e^(tA)   = Σ_(n=0) ^∝   A^n    (t^n /(n!)) .

$${e}^{{A}} =\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:\frac{{A}^{{n}} }{{n}!}\:\:\:{let}\:\:{find}\:\:{A}^{{n}} \:{the}\:{carscteristic}\:{polynomial} \\ $$$${of}\:\:{A}\:\:{is}\:{P}_{{c}} \left({A}\right)={det}\left({A}\:−{XI}\right)=\begin{vmatrix}{\mathrm{1}−{X}\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:−\mathrm{1}−{X}}\end{vmatrix} \\ $$$$=−\left(\mathrm{1}−{X}^{\mathrm{2}} \right)\:−\mathrm{2}=\:{X}^{\mathrm{2}} −\mathrm{3}\:=\left({X}−\sqrt{\mathrm{3}}\right)\left({X}\:+\sqrt{\left.\mathrm{3}\right)}\right. \\ $$$${so}\:{the}\:{proper}\:{values}\:{of}\:{A}?{are}\:\lambda_{\mathrm{1}} =\sqrt{\mathrm{3}}\:\:{and}\:\lambda_{\mathrm{2}} =−\sqrt{\mathrm{3}} \\ $$$${V}\left(\lambda_{\mathrm{1}} \right)\:={ker}\left({A}\:−\lambda_{\mathrm{1}} {I}\right) \\ $$$${u}\left({x},{y}\right)\in{V}\left(\lambda_{\mathrm{1}} \right)\Leftrightarrow\:\left({A}\:−\lambda_{\mathrm{1}} {I}\right){u}=\mathrm{0} \\ $$$$\begin{pmatrix}{\mathrm{1}−\sqrt{\mathrm{3}}\:\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{2}\:\:\:\:\:\:\:\:−\mathrm{2}−\sqrt{\mathrm{3}}}\end{pmatrix}\:\:\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:=\begin{pmatrix}{{o}\:}\\{{o}}\end{pmatrix}\:\:\:{after}\:{cslculus}\:{we}\:{find} \\ $$$${V}\left(\:\lambda_{\mathrm{1}} \right)=\:{D}_{{e}_{\mathrm{1}\:} } \:\:{with}\:{e}_{\mathrm{1}} \begin{pmatrix}{\mathrm{1}}\\{−\left(\mathrm{1}−\sqrt{\mathrm{3}}\right)}\end{pmatrix}\:\: \\ $$$${V}\left(\lambda_{\mathrm{2}} \right)={ker}\left({A}\:−\lambda_{\mathrm{2}\:} {I}\right) \\ $$$${u}\left({x},{y}\right)\in{V}\left(\lambda_{\mathrm{2}} \right)\:\:\Leftrightarrow\:\left({A}\:−\lambda_{\mathrm{2}} {I}\right){u}=\mathrm{0} \\ $$$$\Leftrightarrow\begin{pmatrix}{\mathrm{1}+\sqrt{\mathrm{3}}\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:−\mathrm{1}+\sqrt{\mathrm{3}}}\end{pmatrix}\:\:\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:{after}\:{calculus}\:{we}\:{find} \\ $$$${V}\left(\lambda_{\mathrm{2}} \right)=\:{D}_{{e}_{\mathrm{2}} } \:\:\:\:\:{with}\:\:{e}_{\mathrm{2}} \begin{pmatrix}{\mathrm{1}}\\{−\left(\mathrm{1}+\sqrt{\left.\mathrm{3}\right)}\right.}\end{pmatrix}\:\:\:{so}\:{the}\:{diagonal} \\ $$$${mstrix}\:{is}\:{D}=\:\begin{pmatrix}{\sqrt{\mathrm{3}}\:\:\:\:\:\:\:\:\:\mathrm{0}\:}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:−\sqrt{\mathrm{3}_{} }}\end{pmatrix}\:\:{and}\:\:{the}\:{inversible} \\ $$$${matrix}\:{id}\:\:{P}=\:\:\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{−\left(\mathrm{1}−\sqrt{\mathrm{3}}\:\:\:\:\:\:\:−\left(\mathrm{1}+\sqrt{\mathrm{3}}\:\:\right)\:\:\:\:\right.}\end{pmatrix}\:\:{we}\:{have} \\ $$$${P}^{−\mathrm{1}} \:\:\:=\frac{{tran}\left({com}\:{P}\right)}{{detP}}\:\:.\:\:\:{com}\left({P}\right)=\:\left(−\mathrm{1}\right)^{{i}+{j}} \:{a}_{{ij}} \:\:{we}\:{find} \\ $$$${P}^{−\mathrm{1}} =\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\begin{pmatrix}{\mathrm{1}+\sqrt{\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{−\left(\mathrm{1}−\sqrt{\left.\mathrm{3}\right)}\:\:\:\:\:\:\:−\mathrm{1}\right.}\end{pmatrix}\:\:\:{we}\:{have}\:{A}\:={PDP}^{−\mathrm{1}} \: \\ $$$$\Rightarrow\:\:{A}^{{n}} =\:{P}\:{D}^{{n}} {P}^{−\mathrm{1}} \:\:{after}\:{all}\:{calculus}\:{we}\:{find} \\ $$$$\:\:\:\:{A}^{{n}} \:\:\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\:\:\:\:\:\:\:\left(\:\:\:\:\:\left(\sqrt{\mathrm{3}}\:\:\right)^{{n}} \left(\mathrm{1}+\sqrt{\mathrm{3}}\right)−\left(−\sqrt{\mathrm{3}}\right)^{{n}} \left(\mathrm{1}−\sqrt{\mathrm{3}}\right)\:\:\:\:\:\:\:\:\:\:\:\left(\sqrt{\mathrm{3}}\right)^{{n}} \:−\left(−\sqrt{\mathrm{3}}\right)^{{n}} \:\:\:\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\:\mathrm{2}\:\left(\sqrt{\mathrm{3}}\right)^{{n}} \:\:\:−\mathrm{2}\left(−\sqrt{\mathrm{3}}\right)^{{n}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\left(\mathrm{1}−\sqrt{\mathrm{3}}\right)\left(\sqrt{\mathrm{3}}\right)^{{n}} \:\:+\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)\:\left(−\sqrt{\mathrm{3}}\right)^{{n}} \:\:\:\:\:\right)\:\:\:.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$${we}\:{have}\:\:{e}^{{A}} \:\:=\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:\frac{{A}^{{n}} }{{n}!}\:\:{and}\:\:{e}^{{tA}} \:\:=\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:{A}^{{n}} \:\:\:\frac{{t}^{{n}} }{{n}!}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com