Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28268 by abdo imad last updated on 22/Jan/18

 find in terms of n the value of  A_n =  ∫_0 ^1 (1+x^2 )^(n/2)  sin(narctanx)dx .  ( n∈ N).

$$\:{find}\:{in}\:{terms}\:{of}\:{n}\:{the}\:{value}\:{of} \\ $$$${A}_{{n}} =\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{{n}}{\mathrm{2}}} \:{sin}\left({narctanx}\right){dx}\:.\:\:\left(\:{n}\in\:{N}\right). \\ $$

Commented by abdo imad last updated on 23/Jan/18

let introduce the polynome P(x)= (1/(2i)) ((1+ix)^n  −(1−ix)^n )  let write P(x) in geometric form  .we have   ∣1+ix∣= (√(1+x^2 ))= (1+x^2 )^(1/2)  and  1+ix = (√(1+x^2 )) (  (1/(√(1+x^2 ))) +i(x/(√(1+x^2 ))))= r e^(iθ)   ⇒  r=(√(1+x^2 ))   and  tanθ=x⇒ θ=artanx  so  (1+ix)^n = (1+x^2 )^(n/2)  e^(inarctanx)     (1−ix)^n =(1+x^2 )^(n/2)  e^(−inartanx)   and  P(x)=(1/(2i))( 2iIm((1+ix)^n ))= (1+x^2 )^(n/2)  sin(narctanx)  ⇒ A_n =∫_0 ^1 P(x)dx   but we have proved that  P(x)= Σ_(p=0) ^([((n−1)/2)])  (−1)^p  C_n ^(2p+1)  x^(2p+1)   ∫_0 ^1 P(x)dx =  Σ_(p=0) ^([((n−1)/2)])  (−1)^p   (C_n ^(2p+1) /(2p+2)) = A_n   .

$${let}\:{introduce}\:{the}\:{polynome}\:{P}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}{i}}\:\left(\left(\mathrm{1}+{ix}\right)^{{n}} \:−\left(\mathrm{1}−{ix}\right)^{{n}} \right) \\ $$$${let}\:{write}\:{P}\left({x}\right)\:{in}\:{geometric}\:{form}\:\:.{we}\:{have}\: \\ $$$$\mid\mathrm{1}+{ix}\mid=\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }=\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:{and} \\ $$$$\mathrm{1}+{ix}\:=\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\left(\:\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:+{i}\frac{{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\right)=\:{r}\:{e}^{{i}\theta} \:\:\Rightarrow \\ $$$${r}=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\:\:{and}\:\:{tan}\theta={x}\Rightarrow\:\theta={artanx}\:\:{so} \\ $$$$\left(\mathrm{1}+{ix}\right)^{{n}} =\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{{n}}{\mathrm{2}}} \:{e}^{{inarctanx}} \:\: \\ $$$$\left(\mathrm{1}−{ix}\right)^{{n}} =\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{{n}}{\mathrm{2}}} \:{e}^{−{inartanx}} \:\:{and} \\ $$$${P}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}\left(\:\mathrm{2}{iIm}\left(\left(\mathrm{1}+{ix}\right)^{{n}} \right)\right)=\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{{n}}{\mathrm{2}}} \:{sin}\left({narctanx}\right) \\ $$$$\Rightarrow\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {P}\left({x}\right){dx}\:\:\:{but}\:{we}\:{have}\:{proved}\:{that} \\ $$$${P}\left({x}\right)=\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\left(−\mathrm{1}\right)^{{p}} \:{C}_{{n}} ^{\mathrm{2}{p}+\mathrm{1}} \:{x}^{\mathrm{2}{p}+\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {P}\left({x}\right){dx}\:=\:\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\left(−\mathrm{1}\right)^{{p}} \:\:\frac{{C}_{{n}} ^{\mathrm{2}{p}+\mathrm{1}} }{\mathrm{2}{p}+\mathrm{2}}\:=\:{A}_{{n}} \:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com