Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 28278 by ajfour last updated on 23/Jan/18

Commented by ajfour last updated on 23/Jan/18

If y=mx+c   be tangent to the  ellipse (x^2 /a^2 )+(y^2 /b^2 )=1 , find the  condition for tangency of the   given line to the ellipse.

$${If}\:{y}={mx}+{c}\:\:\:{be}\:{tangent}\:{to}\:{the} \\ $$$${ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:,\:{find}\:{the} \\ $$$${condition}\:{for}\:{tangency}\:{of}\:{the}\: \\ $$$${given}\:{line}\:{to}\:{the}\:{ellipse}. \\ $$

Answered by ajfour last updated on 23/Jan/18

x=acos θ  , y=bsin θ  As y=mx+c  c=bsin θ−amcos θ  c=(√(a^2 m^2 +b^2 )) sin (θ−tan^(−1) ((am)/b))  line cuts the ellipse only if  θ is real.  for being tangent the line has  greatest value of c for a given m.  hence  for the line y=mx+c  to be  tangent                   c=±(√(a^2 m^2 +b^2 ))  .

$${x}={a}\mathrm{cos}\:\theta\:\:,\:{y}={b}\mathrm{sin}\:\theta \\ $$$${As}\:{y}={mx}+{c} \\ $$$${c}={b}\mathrm{sin}\:\theta−{am}\mathrm{cos}\:\theta \\ $$$${c}=\sqrt{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:\mathrm{sin}\:\left(\theta−\mathrm{tan}^{−\mathrm{1}} \frac{{am}}{{b}}\right) \\ $$$${line}\:{cuts}\:{the}\:{ellipse}\:{only}\:{if} \\ $$$$\theta\:{is}\:{real}. \\ $$$${for}\:{being}\:{tangent}\:{the}\:{line}\:{has} \\ $$$${greatest}\:{value}\:{of}\:{c}\:{for}\:{a}\:{given}\:{m}. \\ $$$${hence}\:\:{for}\:{the}\:{line}\:{y}={mx}+{c}\:\:{to}\:{be} \\ $$$${tangent} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{c}}=\pm\sqrt{\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{m}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} }\:\:. \\ $$$$ \\ $$

Commented by mrW2 last updated on 23/Jan/18

Thank you sir!

$${Thank}\:{you}\:{sir}! \\ $$

Answered by mrW2 last updated on 23/Jan/18

Let′s see the general case and find  the condition when the line  px+qy+r=0  tangents the ellipse  (x^2 /a^2 )+(y^2 /b^2 )=1.    The intersection points from the line  and the ellipse are the solutions of   { ((px+qy+r=0    ...(i))),(((x^2 /a^2 )+(y^2 /b^2 )=1    ...(ii))) :}  from (i):  qy=−px−r  from (ii):  b^2 q^2 x^2 +a^2 q^2 y^2 =a^2 b^2 q^2   ⇒b^2 q^2 x^2 +a^2 (−px−r)^2 =a^2 b^2 q^2   ⇒b^2 q^2 x^2 +a^2 (p^2 x^2 +2prx+r^2 )=a^2 b^2 q^2   ⇒(a^2 p^2 +b^2 q^2 )x^2 +2a^2 prx+a^2 (r^2 −b^2 q^2 )=0    When the line only tangents the ellipse,  the eqn. above should have one and  only one solution. That means  Δ=4a^4 p^2 r^2 −4(a^2 p^2 +b^2 q^2 )a^2 (r^2 −b^2 q^2 )=0  ⇒a^2 p^2 r^2 =(a^2 p^2 +b^2 q^2 )(r^2 −b^2 q^2 )  ⇒a^2 p^2 r^2 =a^2 p^2 r^2 +b^2 q^2 r^2 −a^2 b^2 p^2 q^2 −b^4 q^4   ⇒r^2 =a^2 p^2 +b^2 q^2   or  ⇒(ap)^2 +(bq)^2 =r^2

$${Let}'{s}\:{see}\:{the}\:{general}\:{case}\:{and}\:{find} \\ $$$${the}\:{condition}\:{when}\:{the}\:{line} \\ $$$${px}+{qy}+{r}=\mathrm{0} \\ $$$${tangents}\:{the}\:{ellipse} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}. \\ $$$$ \\ $$$${The}\:{intersection}\:{points}\:{from}\:{the}\:{line} \\ $$$${and}\:{the}\:{ellipse}\:{are}\:{the}\:{solutions}\:{of} \\ $$$$\begin{cases}{{px}+{qy}+{r}=\mathrm{0}\:\:\:\:...\left({i}\right)}\\{\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\:\:...\left({ii}\right)}\end{cases} \\ $$$${from}\:\left({i}\right): \\ $$$${qy}=−{px}−{r} \\ $$$${from}\:\left({ii}\right): \\ $$$${b}^{\mathrm{2}} {q}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} {q}^{\mathrm{2}} {y}^{\mathrm{2}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} {q}^{\mathrm{2}} \\ $$$$\Rightarrow{b}^{\mathrm{2}} {q}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} \left(−{px}−{r}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} {q}^{\mathrm{2}} \\ $$$$\Rightarrow{b}^{\mathrm{2}} {q}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} \left({p}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{2}{prx}+{r}^{\mathrm{2}} \right)={a}^{\mathrm{2}} {b}^{\mathrm{2}} {q}^{\mathrm{2}} \\ $$$$\Rightarrow\left({a}^{\mathrm{2}} {p}^{\mathrm{2}} +{b}^{\mathrm{2}} {q}^{\mathrm{2}} \right){x}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{2}} {prx}+{a}^{\mathrm{2}} \left({r}^{\mathrm{2}} −{b}^{\mathrm{2}} {q}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$ \\ $$$${When}\:{the}\:{line}\:{only}\:{tangents}\:{the}\:{ellipse}, \\ $$$${the}\:{eqn}.\:{above}\:{should}\:{have}\:{one}\:{and} \\ $$$${only}\:{one}\:{solution}.\:{That}\:{means} \\ $$$$\Delta=\mathrm{4}{a}^{\mathrm{4}} {p}^{\mathrm{2}} {r}^{\mathrm{2}} −\mathrm{4}\left({a}^{\mathrm{2}} {p}^{\mathrm{2}} +{b}^{\mathrm{2}} {q}^{\mathrm{2}} \right){a}^{\mathrm{2}} \left({r}^{\mathrm{2}} −{b}^{\mathrm{2}} {q}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{2}} {p}^{\mathrm{2}} {r}^{\mathrm{2}} =\left({a}^{\mathrm{2}} {p}^{\mathrm{2}} +{b}^{\mathrm{2}} {q}^{\mathrm{2}} \right)\left({r}^{\mathrm{2}} −{b}^{\mathrm{2}} {q}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{a}^{\mathrm{2}} {p}^{\mathrm{2}} {r}^{\mathrm{2}} ={a}^{\mathrm{2}} {p}^{\mathrm{2}} {r}^{\mathrm{2}} +{b}^{\mathrm{2}} {q}^{\mathrm{2}} {r}^{\mathrm{2}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} {p}^{\mathrm{2}} {q}^{\mathrm{2}} −{b}^{\mathrm{4}} {q}^{\mathrm{4}} \\ $$$$\Rightarrow{r}^{\mathrm{2}} ={a}^{\mathrm{2}} {p}^{\mathrm{2}} +{b}^{\mathrm{2}} {q}^{\mathrm{2}} \\ $$$${or} \\ $$$$\Rightarrow\left({ap}\right)^{\mathrm{2}} +\left({bq}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$

Commented by ajfour last updated on 23/Jan/18

thanks Sir, nice generalisation.

$${thanks}\:{Sir},\:{nice}\:{generalisation}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com