All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 28319 by NECx last updated on 24/Jan/18
Iftherootsofx2+px+q=0,q≠0areαandβ.Findtherootsofqx2+(2q−p2)x+q=0intermsofαandβ.
Answered by Rasheed.Sindhi last updated on 24/Jan/18
x2+px+q=0⇒α+β=−p,αβ=q⇒p=−(α+β),q=αβqx2+(2q−p2)x+q=0x=−(2q−p2)±(2q−p2)2−4q22qx=−(2q−p2)±4q2−4p2q+p4−4q22qx=−(2q−p2)±−4p2q+p42qx=−2q+p2±pp2−4q2qx=−2(αβ)+(α+β)2±(−α−β)(α+β)2−4αβ2αβx=−2αβ+(α+β)2∓(α+β)(α2−2αβ+β22αβx=−2αβ+α2+2αβ+β2∓(α+β)(α−β)2αβx=α2+β2∓(α2−β2)2αβx=α2+β2−(α2−β2)2αβ,α2+β2+(α2−β2)2αβx=α2+β2−α2+β2)2αβ,α2+β2+α2−β22αβx=2β22αβ,2α22αβx=βα,αβ
x2+px+q=0p=−(α+β),q=αβqx2+(2q−p2)x+q=0⇒αβx2+{2αβ−(α+β)2}x+αβ=0LettherootsareA&BA+B=−2αβ−(α+β)2αβ=α2+β2αβAB=αβαβ=1⇒B=1AA+B=A+1A=α2+β2αβ=αβ+βαA2−(αβ+βα)A+1=0A2−αβA−βαA+(αβ)(βα)=0A(A−αβ)−βα(A−αβ)=0(A−αβ)(A−βα)=0A=αβ,βαB=1A=βα,αβRootsareαβ&βα
Terms of Service
Privacy Policy
Contact: info@tinkutara.com