Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 28349 by ajfour last updated on 24/Jan/18

Commented by ajfour last updated on 24/Jan/18

Q. 28339   (answer)

$${Q}.\:\mathrm{28339}\:\:\:\left({answer}\right) \\ $$

Answered by ajfour last updated on 24/Jan/18

  𝛚=(d𝛉/dt) ,   y_1 =atan 𝛉  ,  y_2 =asec 𝛉−a  (dy_1 /dt)=ωasec^2 θ  , (dy_2 /dt)=ωasec θtan θ  mgy_1 −mgy_2 =(1/2)m_1 ((dy_1 /dt))^2 +                                           (1/2)m_2 ((dy_2 /dt))^2   ⇒  2m_1 gatan θ−2m_2 ga(sec θ−1)    =m_1 ω^2 a^2 sec^4 θ+m_2 ω^2 a^2 sec^2 θtan^2 θ  or  2ga(m_1 tan θ−m_2 sec θ+m_2 )=         ω^2 a^2 sec^2 θ(m_1 sec^2 θ+m_2 tan^2 θ)  ⇒  𝛚^2 =((2g)/a) (((m_1 tan 𝛉−m_2 sec 𝛉+m_2 ))/((m_1 sec^2 𝛉+m_2 tan^2 𝛉))) cos^2 𝛉 .  ω varies with θ ,   at θ=0     ω^2 =0  ⇒   motion is possible   T→∞ ⇒ tendency of  irreversible                      motion at the start.

$$\:\:\boldsymbol{\omega}=\frac{\boldsymbol{{d}\theta}}{\boldsymbol{{dt}}}\:, \\ $$$$\:\boldsymbol{{y}}_{\mathrm{1}} =\boldsymbol{{a}}\mathrm{tan}\:\boldsymbol{\theta}\:\:,\:\:\boldsymbol{{y}}_{\mathrm{2}} =\boldsymbol{{a}}\mathrm{sec}\:\boldsymbol{\theta}−\boldsymbol{{a}} \\ $$$$\frac{{dy}_{\mathrm{1}} }{{dt}}=\omega{a}\mathrm{sec}\:^{\mathrm{2}} \theta\:\:,\:\frac{{dy}_{\mathrm{2}} }{{dt}}=\omega{a}\mathrm{sec}\:\theta\mathrm{tan}\:\theta \\ $$$$\boldsymbol{{mgy}}_{\mathrm{1}} −\boldsymbol{{mgy}}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{m}}_{\mathrm{1}} \left(\frac{\boldsymbol{{dy}}_{\mathrm{1}} }{\boldsymbol{{dt}}}\right)^{\mathrm{2}} + \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{m}}_{\mathrm{2}} \left(\frac{\boldsymbol{{dy}}_{\mathrm{2}} }{\boldsymbol{{dt}}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{2}{m}_{\mathrm{1}} {ga}\mathrm{tan}\:\theta−\mathrm{2}{m}_{\mathrm{2}} {ga}\left(\mathrm{sec}\:\theta−\mathrm{1}\right) \\ $$$$\:\:={m}_{\mathrm{1}} \omega^{\mathrm{2}} {a}^{\mathrm{2}} \mathrm{sec}\:^{\mathrm{4}} \theta+{m}_{\mathrm{2}} \omega^{\mathrm{2}} {a}^{\mathrm{2}} \mathrm{sec}\:^{\mathrm{2}} \theta\mathrm{tan}\:^{\mathrm{2}} \theta \\ $$$${or} \\ $$$$\mathrm{2}{ga}\left({m}_{\mathrm{1}} \mathrm{tan}\:\theta−{m}_{\mathrm{2}} \mathrm{sec}\:\theta+{m}_{\mathrm{2}} \right)= \\ $$$$\:\:\:\:\:\:\:\omega^{\mathrm{2}} {a}^{\mathrm{2}} \mathrm{sec}\:^{\mathrm{2}} \theta\left({m}_{\mathrm{1}} \mathrm{sec}\:^{\mathrm{2}} \theta+{m}_{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \theta\right) \\ $$$$\Rightarrow\:\:\boldsymbol{\omega}^{\mathrm{2}} =\frac{\mathrm{2}\boldsymbol{{g}}}{\boldsymbol{{a}}}\:\frac{\left(\boldsymbol{{m}}_{\mathrm{1}} \mathrm{tan}\:\boldsymbol{\theta}−\boldsymbol{{m}}_{\mathrm{2}} \mathrm{sec}\:\boldsymbol{\theta}+\boldsymbol{{m}}_{\mathrm{2}} \right)}{\left(\boldsymbol{{m}}_{\mathrm{1}} \mathrm{sec}\:^{\mathrm{2}} \boldsymbol{\theta}+\boldsymbol{{m}}_{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \boldsymbol{\theta}\right)}\:\mathrm{cos}\:^{\mathrm{2}} \boldsymbol{\theta}\:. \\ $$$$\omega\:{varies}\:{with}\:\theta\:, \\ $$$$\:{at}\:\theta=\mathrm{0} \\ $$$$\:\:\:\omega^{\mathrm{2}} =\mathrm{0}\:\:\Rightarrow\:\:\:{motion}\:{is}\:{possible} \\ $$$$\:{T}\rightarrow\infty\:\Rightarrow\:{tendency}\:{of}\:\:{irreversible} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{motion}\:{at}\:{the}\:{start}. \\ $$

Commented by Tinkutara last updated on 24/Jan/18

This �� is answer in book. Please explain this.

Commented by Tinkutara last updated on 24/Jan/18

Commented by ajfour last updated on 24/Jan/18

 for ring:  m_1 g−Tsin θ=m_1 a_1   for block  T−m_2 g=m_2 a_2   for equilibrium a_1 =a_2 =0  ⇒ m_1 g−Tsin θ=T−m_2 g=0  at equilibrium    T=  m_2 g  sin θ=(m_1 /m_2 )     equilibrium cannot be possible  for  m_1 ≥ m_2   but in the case  m_1 =(m_2 /2)  equilibrium at 𝛉=sin^(−1) ((m_1 /m_2 ))=(π/6) .

$$\:{for}\:{ring}: \\ $$$${m}_{\mathrm{1}} {g}−{T}\mathrm{sin}\:\theta={m}_{\mathrm{1}} {a}_{\mathrm{1}} \\ $$$${for}\:{block} \\ $$$${T}−{m}_{\mathrm{2}} {g}={m}_{\mathrm{2}} {a}_{\mathrm{2}} \\ $$$${for}\:{equilibrium}\:{a}_{\mathrm{1}} ={a}_{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:{m}_{\mathrm{1}} {g}−{T}\mathrm{sin}\:\theta={T}−{m}_{\mathrm{2}} {g}=\mathrm{0} \\ $$$${at}\:{equilibrium}\:\:\:\:{T}=\:\:{m}_{\mathrm{2}} {g} \\ $$$$\mathrm{sin}\:\theta=\frac{{m}_{\mathrm{1}} }{{m}_{\mathrm{2}} }\:\:\: \\ $$$${equilibrium}\:{cannot}\:{be}\:{possible} \\ $$$${for}\:\:{m}_{\mathrm{1}} \geqslant\:{m}_{\mathrm{2}} \\ $$$${but}\:{in}\:{the}\:{case}\:\:{m}_{\mathrm{1}} =\frac{{m}_{\mathrm{2}} }{\mathrm{2}} \\ $$$${equilibrium}\:{at}\:\boldsymbol{\theta}=\mathrm{sin}^{−\mathrm{1}} \left(\frac{{m}_{\mathrm{1}} }{{m}_{\mathrm{2}} }\right)=\frac{\pi}{\mathrm{6}}\:. \\ $$

Commented by Tinkutara last updated on 25/Jan/18

Thank you very much Sir! I got the answer.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com