Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 28371 by abdo imad last updated on 24/Jan/18

prove that x^2 −2x cosθ +1 divide x^(2n)  −2x^n cos(nθ)+1

$${prove}\:{that}\:{x}^{\mathrm{2}} −\mathrm{2}{x}\:{cos}\theta\:+\mathrm{1}\:{divide}\:{x}^{\mathrm{2}{n}} \:−\mathrm{2}{x}^{{n}} {cos}\left({n}\theta\right)+\mathrm{1} \\ $$

Commented by abdo imad last updated on 25/Jan/18

let put   p_n (x)= x^(2n)  −2x^n cos(nθ)+1 and t(x)= x^2 −2xcosθ +1  roots of t(x)?   Δ=4 cos^2 θ −4=−4sin^2 θ =(2isinθ)^2   z_1 =((2cosθ +2isinθ)/2)= e^(iθ)   and z_(2 ) = e^(−iθ)   let prove that  p_n (z_1 )=0 and p_n (z_2 )=0  we have  p_n (z_1 )= e^(i2nθ)  −2e^(inθ) ((e^(inθ)  +e^(−inθ) )/2)+1  = e^(i2nθ)  −e^(i2nθ)  −1+1=0  p_n (z_2 )= e^(−i2nθ)  −2 e^(−inθ)  ((e^(inθ)  +e^(−inθ) )/2) +1  = e^(−i2nθ)  −1 −e^(−i2nθ)    +1 =0 all roots of t(x) are roots of  p_n (x) ⇒t(x) divide p_n (x).

$${let}\:{put}\:\:\:{p}_{{n}} \left({x}\right)=\:{x}^{\mathrm{2}{n}} \:−\mathrm{2}{x}^{{n}} {cos}\left({n}\theta\right)+\mathrm{1}\:{and}\:{t}\left({x}\right)=\:{x}^{\mathrm{2}} −\mathrm{2}{xcos}\theta\:+\mathrm{1} \\ $$$${roots}\:{of}\:{t}\left({x}\right)?\:\:\:\Delta=\mathrm{4}\:{cos}^{\mathrm{2}} \theta\:−\mathrm{4}=−\mathrm{4}{sin}^{\mathrm{2}} \theta\:=\left(\mathrm{2}{isin}\theta\right)^{\mathrm{2}} \\ $$$${z}_{\mathrm{1}} =\frac{\mathrm{2}{cos}\theta\:+\mathrm{2}{isin}\theta}{\mathrm{2}}=\:{e}^{{i}\theta} \:\:{and}\:{z}_{\mathrm{2}\:} =\:{e}^{−{i}\theta} \:\:{let}\:{prove}\:{that} \\ $$$${p}_{{n}} \left({z}_{\mathrm{1}} \right)=\mathrm{0}\:{and}\:{p}_{{n}} \left({z}_{\mathrm{2}} \right)=\mathrm{0}\:\:{we}\:{have} \\ $$$${p}_{{n}} \left({z}_{\mathrm{1}} \right)=\:{e}^{{i}\mathrm{2}{n}\theta} \:−\mathrm{2}{e}^{{in}\theta} \frac{{e}^{{in}\theta} \:+{e}^{−{in}\theta} }{\mathrm{2}}+\mathrm{1} \\ $$$$=\:{e}^{{i}\mathrm{2}{n}\theta} \:−{e}^{{i}\mathrm{2}{n}\theta} \:−\mathrm{1}+\mathrm{1}=\mathrm{0} \\ $$$${p}_{{n}} \left({z}_{\mathrm{2}} \right)=\:{e}^{−{i}\mathrm{2}{n}\theta} \:−\mathrm{2}\:{e}^{−{in}\theta} \:\frac{{e}^{{in}\theta} \:+{e}^{−{in}\theta} }{\mathrm{2}}\:+\mathrm{1} \\ $$$$=\:{e}^{−{i}\mathrm{2}{n}\theta} \:−\mathrm{1}\:−{e}^{−{i}\mathrm{2}{n}\theta} \:\:\:+\mathrm{1}\:=\mathrm{0}\:{all}\:{roots}\:{of}\:{t}\left({x}\right)\:{are}\:{roots}\:{of} \\ $$$${p}_{{n}} \left({x}\right)\:\Rightarrow{t}\left({x}\right)\:{divide}\:{p}_{{n}} \left({x}\right). \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com