Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 28384 by ajfour last updated on 25/Jan/18

Answered by ajfour last updated on 25/Jan/18

If new coordinate axes be  tangent at A (towards right)  x axis and axis of parabola the  y axis (upwards), then eq. of  parabola is  y=px^2   coordinates of A, O, and B are  A(0,0)  , O(−asin θ,−acos θ) ,  B[(b−a)sin θ, (b−a)cos θ]  point B is on parabola, so  p=((cos θ)/((b−a)sin^2 θ))  If y=mx+c      is tangent to  y=px^2   , we have  px^2 −mx−c=0  m^2 +4cp=0 ⇒    c=−m^2 /4p  eq. of a line of slope m passing  through (α,β) and tangent to  parabola has the form  y−β=m(x−α)  ⇒    β−mα=−m^2 /4p  or    m^2 −4mpα+4pβ=0  ∣tan φ∣=((√((m_1 +m_2 )^2 −4m_1 m_2 ))/(1+m_1 m_2 ))      =((√(16α^2 p^2 −16βp))/(1+4pβ))     substituting α=−asin θ,   β=−acos θ , and p=((cos θ)/((b−a)sin^2 θ))  ∣tan 𝛗∣=((4((√(((a^2 cos^2 θ)/((b−a)^2 sin^2 θ))+((acos^2 θ)/((b−a)sin^2 θ)))) ))/(∣1−((4acos^2 θ)/((b−a)sin^2 θ))∣))   𝛗 < (π/2)  for  θ > tan^(−1) (((4a)/(b−a)))  (if a=b,  p   just goes undefined )  say for θ=(π/3)  ∣tan φ∣=(((4/(√3))(((√(ab))/(b−a))))/(∣1−((4a)/(3(b−a)))∣))=((12(√(ab)))/((√3)∣3b−7a∣)) .

$${If}\:{new}\:{coordinate}\:{axes}\:{be} \\ $$$${tangent}\:{at}\:{A}\:\left({towards}\:{right}\right) \\ $$$${x}\:{axis}\:{and}\:{axis}\:{of}\:{parabola}\:{the} \\ $$$${y}\:{axis}\:\left({upwards}\right),\:{then}\:{eq}.\:{of} \\ $$$${parabola}\:{is}\:\:\boldsymbol{{y}}=\boldsymbol{{px}}^{\mathrm{2}} \\ $$$${coordinates}\:{of}\:{A},\:{O},\:{and}\:{B}\:{are} \\ $$$${A}\left(\mathrm{0},\mathrm{0}\right)\:\:,\:{O}\left(−{a}\mathrm{sin}\:\theta,−{a}\mathrm{cos}\:\theta\right)\:, \\ $$$${B}\left[\left({b}−{a}\right)\mathrm{sin}\:\theta,\:\left({b}−{a}\right)\mathrm{cos}\:\theta\right] \\ $$$${point}\:{B}\:{is}\:{on}\:{parabola},\:{so} \\ $$$$\boldsymbol{{p}}=\frac{\mathrm{cos}\:\theta}{\left({b}−{a}\right)\mathrm{sin}\:^{\mathrm{2}} \theta} \\ $$$${If}\:{y}={mx}+{c}\:\:\:\:\:\:{is}\:{tangent}\:{to} \\ $$$${y}={px}^{\mathrm{2}} \:\:,\:{we}\:{have} \\ $$$${px}^{\mathrm{2}} −{mx}−{c}=\mathrm{0} \\ $$$${m}^{\mathrm{2}} +\mathrm{4}{cp}=\mathrm{0}\:\Rightarrow\:\:\:\:{c}=−{m}^{\mathrm{2}} /\mathrm{4}{p} \\ $$$${eq}.\:{of}\:{a}\:{line}\:{of}\:{slope}\:\boldsymbol{{m}}\:{passing} \\ $$$${through}\:\left(\alpha,\beta\right)\:{and}\:{tangent}\:{to} \\ $$$${parabola}\:{has}\:{the}\:{form} \\ $$$${y}−\beta={m}\left({x}−\alpha\right) \\ $$$$\Rightarrow\:\:\:\:\beta−{m}\alpha=−{m}^{\mathrm{2}} /\mathrm{4}{p} \\ $$$${or}\:\:\:\:{m}^{\mathrm{2}} −\mathrm{4}{mp}\alpha+\mathrm{4}{p}\beta=\mathrm{0} \\ $$$$\mid\mathrm{tan}\:\phi\mid=\frac{\sqrt{\left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{m}_{\mathrm{1}} {m}_{\mathrm{2}} }}{\mathrm{1}+{m}_{\mathrm{1}} {m}_{\mathrm{2}} } \\ $$$$\:\:\:\:=\frac{\sqrt{\mathrm{16}\alpha^{\mathrm{2}} {p}^{\mathrm{2}} −\mathrm{16}\beta{p}}}{\mathrm{1}+\mathrm{4}{p}\beta} \\ $$$$\:\:\:{substituting}\:\alpha=−{a}\mathrm{sin}\:\theta,\: \\ $$$$\beta=−{a}\mathrm{cos}\:\theta\:,\:{and}\:{p}=\frac{\mathrm{cos}\:\theta}{\left({b}−{a}\right)\mathrm{sin}\:^{\mathrm{2}} \theta} \\ $$$$\mid\mathrm{tan}\:\boldsymbol{\phi}\mid=\frac{\mathrm{4}\left(\sqrt{\frac{{a}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta}{\left({b}−{a}\right)^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}+\frac{{a}\mathrm{cos}\:^{\mathrm{2}} \theta}{\left({b}−{a}\right)\mathrm{sin}\:^{\mathrm{2}} \theta}}\:\right)}{\mid\mathrm{1}−\frac{\mathrm{4}{a}\mathrm{cos}\:^{\mathrm{2}} \theta}{\left({b}−{a}\right)\mathrm{sin}\:^{\mathrm{2}} \theta}\mid}\: \\ $$$$\boldsymbol{\phi}\:<\:\frac{\pi}{\mathrm{2}}\:\:{for}\:\:\theta\:>\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{4}{a}}{{b}−{a}}\right) \\ $$$$\left({if}\:{a}={b},\:\:{p}\:\:\:{just}\:{goes}\:{undefined}\:\right) \\ $$$${say}\:{for}\:\theta=\frac{\pi}{\mathrm{3}} \\ $$$$\mid\mathrm{tan}\:\phi\mid=\frac{\frac{\mathrm{4}}{\sqrt{\mathrm{3}}}\left(\frac{\sqrt{{ab}}}{{b}−{a}}\right)}{\mid\mathrm{1}−\frac{\mathrm{4}{a}}{\mathrm{3}\left({b}−{a}\right)}\mid}=\frac{\mathrm{12}\sqrt{{ab}}}{\sqrt{\mathrm{3}}\mid\mathrm{3}{b}−\mathrm{7}{a}\mid}\:. \\ $$

Answered by mrW2 last updated on 25/Jan/18

Commented by mrW2 last updated on 25/Jan/18

in coordinate system shown above,  eqn. of parabola is  y=px^2 +q  x_A =0  y_A =a cos θ  x_B =(b−a) sin θ  y_B =b cos θ    a cos θ=q  b cos θ=p (b−a)^2  sin^2  θ+q  ⇒q=a cos θ  ⇒p=((cos θ)/((b−a) sin^2  θ))    x_O =−a sin θ  y_O =0  eqn. of line OP:  y=m(x+a sin θ)  on the other side y=px^2 +q  ⇒px^2 +q=m(x+a sin θ)  ⇒px^2 −mx+q−ma sin θ=0  Δ=m^2 −4p(q−ma sin θ)=0  ⇒m^2 +4pa sin θ m−4pq=0  ⇒m=((−4pa sin θ±(√((4pa sin θ)^2 +4×4pq)))/2)    tan φ_1 =m_1 =−2pa sin θ+2(√((pa sin θ)^2 +pq))  tan φ_2 =m_2 =−2pa sin θ−2(√((pa sin θ)^2 +pq))  tan φ=tan (φ_2 −φ_1 )=((m_2 −m_1 )/(1+m_2 m_1 ))=((−4(√((pa sin θ)^2 +pq)))/(1−4pq))  tan φ=((4(√((pa sin θ)^2 +pq)))/(4pq−1))  ⇒tan φ=((4(√(((a/((b−a)tan θ)))^2 +(a/((b−a)tan^2  θ)))))/(((4a)/((b−a)tan^2  θ))−1))  ⇒tan φ=((4tan θ(√(ab)))/(4a−(b−a)tan^2  θ))  ⇒φ=tan^(−1) ((4tan θ (√(ab)))/(4a−(b−a)tan^2  θ))

$${in}\:{coordinate}\:{system}\:{shown}\:{above}, \\ $$$${eqn}.\:{of}\:{parabola}\:{is} \\ $$$${y}={px}^{\mathrm{2}} +{q} \\ $$$${x}_{{A}} =\mathrm{0} \\ $$$${y}_{{A}} ={a}\:\mathrm{cos}\:\theta \\ $$$${x}_{{B}} =\left({b}−{a}\right)\:\mathrm{sin}\:\theta \\ $$$${y}_{{B}} ={b}\:\mathrm{cos}\:\theta \\ $$$$ \\ $$$${a}\:\mathrm{cos}\:\theta={q} \\ $$$${b}\:\mathrm{cos}\:\theta={p}\:\left({b}−{a}\right)^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta+{q} \\ $$$$\Rightarrow{q}={a}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{p}=\frac{\mathrm{cos}\:\theta}{\left({b}−{a}\right)\:\mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$$ \\ $$$${x}_{{O}} =−{a}\:\mathrm{sin}\:\theta \\ $$$${y}_{{O}} =\mathrm{0} \\ $$$${eqn}.\:{of}\:{line}\:{OP}: \\ $$$${y}={m}\left({x}+{a}\:\mathrm{sin}\:\theta\right) \\ $$$${on}\:{the}\:{other}\:{side}\:{y}={px}^{\mathrm{2}} +{q} \\ $$$$\Rightarrow{px}^{\mathrm{2}} +{q}={m}\left({x}+{a}\:\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow{px}^{\mathrm{2}} −{mx}+{q}−{ma}\:\mathrm{sin}\:\theta=\mathrm{0} \\ $$$$\Delta={m}^{\mathrm{2}} −\mathrm{4}{p}\left({q}−{ma}\:\mathrm{sin}\:\theta\right)=\mathrm{0} \\ $$$$\Rightarrow{m}^{\mathrm{2}} +\mathrm{4}{pa}\:\mathrm{sin}\:\theta\:{m}−\mathrm{4}{pq}=\mathrm{0} \\ $$$$\Rightarrow{m}=\frac{−\mathrm{4}{pa}\:\mathrm{sin}\:\theta\pm\sqrt{\left(\mathrm{4}{pa}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} +\mathrm{4}×\mathrm{4}{pq}}}{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{tan}\:\phi_{\mathrm{1}} ={m}_{\mathrm{1}} =−\mathrm{2}{pa}\:\mathrm{sin}\:\theta+\mathrm{2}\sqrt{\left({pa}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} +{pq}} \\ $$$$\mathrm{tan}\:\phi_{\mathrm{2}} ={m}_{\mathrm{2}} =−\mathrm{2}{pa}\:\mathrm{sin}\:\theta−\mathrm{2}\sqrt{\left({pa}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} +{pq}} \\ $$$$\mathrm{tan}\:\phi=\mathrm{tan}\:\left(\phi_{\mathrm{2}} −\phi_{\mathrm{1}} \right)=\frac{{m}_{\mathrm{2}} −{m}_{\mathrm{1}} }{\mathrm{1}+{m}_{\mathrm{2}} {m}_{\mathrm{1}} }=\frac{−\mathrm{4}\sqrt{\left({pa}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} +{pq}}}{\mathrm{1}−\mathrm{4}{pq}} \\ $$$$\mathrm{tan}\:\phi=\frac{\mathrm{4}\sqrt{\left({pa}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} +{pq}}}{\mathrm{4}{pq}−\mathrm{1}} \\ $$$$\Rightarrow\mathrm{tan}\:\phi=\frac{\mathrm{4}\sqrt{\left(\frac{{a}}{\left({b}−{a}\right)\mathrm{tan}\:\theta}\right)^{\mathrm{2}} +\frac{{a}}{\left({b}−{a}\right)\mathrm{tan}^{\mathrm{2}} \:\theta}}}{\frac{\mathrm{4}{a}}{\left({b}−{a}\right)\mathrm{tan}^{\mathrm{2}} \:\theta}−\mathrm{1}} \\ $$$$\Rightarrow\mathrm{tan}\:\phi=\frac{\mathrm{4tan}\:\theta\sqrt{{ab}}}{\mathrm{4}{a}−\left({b}−{a}\right)\mathrm{tan}^{\mathrm{2}} \:\theta} \\ $$$$\Rightarrow\phi=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{4tan}\:\theta\:\sqrt{{ab}}}{\mathrm{4}{a}−\left({b}−{a}\right)\mathrm{tan}^{\mathrm{2}} \:\theta} \\ $$

Commented by ajfour last updated on 25/Jan/18

Thank you Sir. Excellent!

$${Thank}\:{you}\:{Sir}.\:\mathscr{E}{xcellent}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com