Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 28399 by ajfour last updated on 25/Jan/18

Answered by ajfour last updated on 25/Jan/18

eq. of circle:  x=r+rcos θ  , y=r+rsin θ  eq. of line:  (x/a)+(y/b)=1   intersection points:  θ_1 , θ_2  obeys  ((1+cos θ)/a)+((1+sin θ)/b)=(1/r)  ((cos θ)/a)+((sin θ)/b)=(1/r)−((a+b)/(ab))  let  △θ=θ_2 −θ_1   ⇒ bcos ((△θ)/2)cos (((θ_1 +θ_2 )/2))+    asin (((θ_1 +θ_2 )/2))cos ((△θ)/2)=((ab)/r)−(a+b)  Since  tan (((θ_1 +θ_2 )/2))=(a/b)  (b^2 /(√(a^2 +b^2 )))cos ((△θ)/2)+(a^2 /(√(a^2 +b^2 ))) cos  ((△θ)/2)=((ab)/r)−(a+b)  (√(a^2 +b^2 ))cos (((△θ)/2))=((ab)/r)−(a+b)  ((△θ)/2)=cos^(−1) [(1/(√(a^2 +b^2 )))(((ab)/r)−a−b)]  Required Area=     ((r^2 △θ)/2)−(1/2)×(2rsin ((△θ)/2))(rcos ((△θ)/2))  or  A=((r^2 △θ)/2)(1−((sin △θ)/(△θ))) .

$${eq}.\:{of}\:{circle}: \\ $$$${x}={r}+{r}\mathrm{cos}\:\theta\:\:,\:{y}={r}+{r}\mathrm{sin}\:\theta \\ $$$${eq}.\:{of}\:{line}: \\ $$$$\frac{{x}}{{a}}+\frac{{y}}{{b}}=\mathrm{1} \\ $$$$\:{intersection}\:{points}:\:\:\theta_{\mathrm{1}} ,\:\theta_{\mathrm{2}} \:{obeys} \\ $$$$\frac{\mathrm{1}+\mathrm{cos}\:\theta}{{a}}+\frac{\mathrm{1}+\mathrm{sin}\:\theta}{{b}}=\frac{\mathrm{1}}{{r}} \\ $$$$\frac{\mathrm{cos}\:\theta}{{a}}+\frac{\mathrm{sin}\:\theta}{{b}}=\frac{\mathrm{1}}{{r}}−\frac{{a}+{b}}{{ab}} \\ $$$${let}\:\:\bigtriangleup\theta=\theta_{\mathrm{2}} −\theta_{\mathrm{1}} \\ $$$$\Rightarrow\:{b}\mathrm{cos}\:\frac{\bigtriangleup\theta}{\mathrm{2}}\mathrm{cos}\:\left(\frac{\theta_{\mathrm{1}} +\theta_{\mathrm{2}} }{\mathrm{2}}\right)+ \\ $$$$\:\:{a}\mathrm{sin}\:\left(\frac{\theta_{\mathrm{1}} +\theta_{\mathrm{2}} }{\mathrm{2}}\right)\mathrm{cos}\:\frac{\bigtriangleup\theta}{\mathrm{2}}=\frac{{ab}}{{r}}−\left({a}+{b}\right) \\ $$$${Since}\:\:\mathrm{tan}\:\left(\frac{\theta_{\mathrm{1}} +\theta_{\mathrm{2}} }{\mathrm{2}}\right)=\frac{{a}}{{b}} \\ $$$$\frac{{b}^{\mathrm{2}} }{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\mathrm{cos}\:\frac{\bigtriangleup\theta}{\mathrm{2}}+\frac{{a}^{\mathrm{2}} }{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\:\mathrm{cos}\:\:\frac{\bigtriangleup\theta}{\mathrm{2}}=\frac{{ab}}{{r}}−\left({a}+{b}\right) \\ $$$$\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\mathrm{cos}\:\left(\frac{\bigtriangleup\theta}{\mathrm{2}}\right)=\frac{{ab}}{{r}}−\left({a}+{b}\right) \\ $$$$\frac{\bigtriangleup\theta}{\mathrm{2}}=\mathrm{cos}^{−\mathrm{1}} \left[\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\left(\frac{{ab}}{{r}}−{a}−{b}\right)\right] \\ $$$${Required}\:{Area}= \\ $$$$\:\:\:\frac{{r}^{\mathrm{2}} \bigtriangleup\theta}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}×\left(\mathrm{2}{r}\mathrm{sin}\:\frac{\bigtriangleup\theta}{\mathrm{2}}\right)\left({r}\mathrm{cos}\:\frac{\bigtriangleup\theta}{\mathrm{2}}\right) \\ $$$${or}\:\:{A}=\frac{{r}^{\mathrm{2}} \bigtriangleup\theta}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{sin}\:\bigtriangleup\theta}{\bigtriangleup\theta}\right)\:. \\ $$

Commented by mrW2 last updated on 25/Jan/18

I would try like this:  ((cos θ)/a)+((sin θ)/b)=(1/r)−((a+b)/(ab))  ⇒a sin θ+b cos θ=((ab)/r)−a−b  (a/(√(a^2 +b^2 ))) sin θ+(b/(√(a^2 +b^2 ))) cos θ=(1/(√(a^2 +b^2 )))(((ab)/r)−a−b)  sin α sin θ+cos α cos θ=(1/(√(a^2 +b^2 )))(((ab)/r)−a−b)  with α=tan^(−1) (a/b)  ⇒cos (θ−α)=(1/(√(a^2 +b^2 )))(((ab)/r)−a−b)  θ=tan^(−1) (a/b)±cos^(−1) [(1/(√(a^2 +b^2 )))(((ab)/r)−a−b)]  Δθ=θ_2 −θ_1 =2 cos^(−1) [(1/(√(a^2 +b^2 )))(((ab)/r)−a−b)]  ......  A=(r^2 /2)(Δθ−sin Δθ)

$${I}\:{would}\:{try}\:{like}\:{this}: \\ $$$$\frac{\mathrm{cos}\:\theta}{{a}}+\frac{\mathrm{sin}\:\theta}{{b}}=\frac{\mathrm{1}}{{r}}−\frac{{a}+{b}}{{ab}} \\ $$$$\Rightarrow{a}\:\mathrm{sin}\:\theta+{b}\:\mathrm{cos}\:\theta=\frac{{ab}}{{r}}−{a}−{b} \\ $$$$\frac{{a}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\:\mathrm{sin}\:\theta+\frac{{b}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\:\mathrm{cos}\:\theta=\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\left(\frac{{ab}}{{r}}−{a}−{b}\right) \\ $$$$\mathrm{sin}\:\alpha\:\mathrm{sin}\:\theta+\mathrm{cos}\:\alpha\:\mathrm{cos}\:\theta=\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\left(\frac{{ab}}{{r}}−{a}−{b}\right) \\ $$$${with}\:\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{{a}}{{b}} \\ $$$$\Rightarrow\mathrm{cos}\:\left(\theta−\alpha\right)=\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\left(\frac{{ab}}{{r}}−{a}−{b}\right) \\ $$$$\theta=\mathrm{tan}^{−\mathrm{1}} \frac{{a}}{{b}}\pm\mathrm{cos}^{−\mathrm{1}} \left[\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\left(\frac{{ab}}{{r}}−{a}−{b}\right)\right] \\ $$$$\Delta\theta=\theta_{\mathrm{2}} −\theta_{\mathrm{1}} =\mathrm{2}\:\mathrm{cos}^{−\mathrm{1}} \left[\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\left(\frac{{ab}}{{r}}−{a}−{b}\right)\right] \\ $$$$...... \\ $$$${A}=\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left(\Delta\theta−\mathrm{sin}\:\Delta\theta\right)\: \\ $$

Commented by ajfour last updated on 25/Jan/18

thanks very much Sir, i corrected .

$${thanks}\:{very}\:{much}\:{Sir},\:{i}\:{corrected}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com