Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 28411 by ajfour last updated on 25/Jan/18

Commented by ajfour last updated on 25/Jan/18

The smaller sphere touches the  paraboloid only at inner bottommost,  point. Find the smallest value  of R in terms of r, if the larger  sphere touches the smaller sphere  and also the walls of the   paraboloid.

$${The}\:{smaller}\:{sphere}\:{touches}\:{the} \\ $$$${paraboloid}\:{only}\:{at}\:{inner}\:{bottommost}, \\ $$$${point}.\:{Find}\:{the}\:{smallest}\:{value} \\ $$$${of}\:\boldsymbol{{R}}\:{in}\:{terms}\:{of}\:\boldsymbol{{r}},\:{if}\:{the}\:{larger} \\ $$$${sphere}\:{touches}\:{the}\:{smaller}\:{sphere} \\ $$$${and}\:{also}\:{the}\:{walls}\:{of}\:{the}\: \\ $$$${paraboloid}. \\ $$

Answered by ajfour last updated on 25/Jan/18

let eq. of parabola in the plane be  be   y=Ax^2 .  eq of circle with radius r:  x^2 +(y−r)^2 =r^2     since smaller circle touches  parabola at vertex only the origin  is to satisfy simultaneously the  eq. of smaller circle and sphere  and for R to be least we are to  have all four roots real  namely  x=0. Hrnce  x^2 +(Ax^2 −r)^2 =r^2   ⇒  A^2 x^4 +(1−2Ar)x^2 =0  ⇒  x^2 (A^2 x^2 +1−2Ar)=0  ⇒    A=(1/(2r))  Eq. of bigger circle:  x^2 +(y−2r−R)^2 =R^2   eq. of tangent to this circle  x_1 (x−x_1 )+(y_1 −2r−R)(y−y_1 )=0  tangent to parabola  ((y+y_1 )/2)=((xx_1 )/(2r)) ⇒ xx_1 −r(y+y_1 )=0  for both tangents to be same then  comparing coefficient of y :   2r+R−y_1 =r    ...(i)  ⇒ y_1 =r+R   As (x_1 , y_1 ) is on parabola, so  y_1 =(x_1 ^2 /(2r))    ⇒  x_1 ^2 =2r(r+R)  since  x_1 ^2 +(y_1 −2r−R)^2 =R^2   2r(R+r)+r^2 =R^2   ⇒  R^( 2) −2rR−3r^2 =0          (R−r)^2 =4r^2          or   R=3r  .

$${let}\:{eq}.\:{of}\:{parabola}\:{in}\:{the}\:{plane}\:{be} \\ $$$${be}\:\:\:\boldsymbol{{y}}=\boldsymbol{{Ax}}^{\mathrm{2}} . \\ $$$${eq}\:{of}\:{circle}\:{with}\:{radius}\:{r}: \\ $$$${x}^{\mathrm{2}} +\left({y}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \:\: \\ $$$${since}\:{smaller}\:{circle}\:{touches} \\ $$$${parabola}\:{at}\:{vertex}\:{only}\:{the}\:{origin} \\ $$$${is}\:{to}\:{satisfy}\:{simultaneously}\:{the} \\ $$$${eq}.\:{of}\:{smaller}\:{circle}\:{and}\:{sphere} \\ $$$${and}\:{for}\:{R}\:{to}\:{be}\:{least}\:{we}\:{are}\:{to} \\ $$$${have}\:{all}\:{four}\:{roots}\:{real}\:\:{namely} \\ $$$${x}=\mathrm{0}.\:{Hrnce} \\ $$$${x}^{\mathrm{2}} +\left({Ax}^{\mathrm{2}} −{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{A}^{\mathrm{2}} {x}^{\mathrm{4}} +\left(\mathrm{1}−\mathrm{2}{Ar}\right){x}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:\:{x}^{\mathrm{2}} \left({A}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{1}−\mathrm{2}{Ar}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:{A}=\frac{\mathrm{1}}{\mathrm{2}{r}} \\ $$$${Eq}.\:{of}\:{bigger}\:{circle}: \\ $$$${x}^{\mathrm{2}} +\left({y}−\mathrm{2}{r}−{R}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${eq}.\:{of}\:{tangent}\:{to}\:{this}\:{circle} \\ $$$${x}_{\mathrm{1}} \left({x}−{x}_{\mathrm{1}} \right)+\left({y}_{\mathrm{1}} −\mathrm{2}{r}−{R}\right)\left({y}−{y}_{\mathrm{1}} \right)=\mathrm{0} \\ $$$${tangent}\:{to}\:{parabola} \\ $$$$\frac{{y}+{y}_{\mathrm{1}} }{\mathrm{2}}=\frac{{xx}_{\mathrm{1}} }{\mathrm{2}{r}}\:\Rightarrow\:{xx}_{\mathrm{1}} −{r}\left({y}+{y}_{\mathrm{1}} \right)=\mathrm{0} \\ $$$${for}\:{both}\:{tangents}\:{to}\:{be}\:{same}\:{then} \\ $$$${comparing}\:{coefficient}\:{of}\:{y}\:: \\ $$$$\:\mathrm{2}{r}+{R}−{y}_{\mathrm{1}} ={r}\:\:\:\:...\left({i}\right) \\ $$$$\Rightarrow\:{y}_{\mathrm{1}} ={r}+{R} \\ $$$$\:{As}\:\left({x}_{\mathrm{1}} ,\:{y}_{\mathrm{1}} \right)\:{is}\:{on}\:{parabola},\:{so} \\ $$$${y}_{\mathrm{1}} =\frac{{x}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}{r}}\:\:\:\:\Rightarrow\:\:{x}_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{2}{r}\left({r}+{R}\right) \\ $$$${since}\:\:{x}_{\mathrm{1}} ^{\mathrm{2}} +\left({y}_{\mathrm{1}} −\mathrm{2}{r}−{R}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\mathrm{2}{r}\left({R}+{r}\right)+{r}^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{R}^{\:\mathrm{2}} −\mathrm{2}{rR}−\mathrm{3}{r}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\left({R}−{r}\right)^{\mathrm{2}} =\mathrm{4}{r}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:{or}\:\:\:{R}=\mathrm{3}{r}\:\:. \\ $$

Commented by mrW2 last updated on 25/Jan/18

I think there is following relation:  the first circle r_1 =(1/(2A))=r  the second circle r_2 (=R)=(3/(2A))=3r  the third circle r_3 =(5/(2A))=5r  ....  the n−th circle r_n =((2n−1)/(2A))=(2n−1)r

$${I}\:{think}\:{there}\:{is}\:{following}\:{relation}: \\ $$$${the}\:{first}\:{circle}\:{r}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}{A}}={r} \\ $$$${the}\:{second}\:{circle}\:{r}_{\mathrm{2}} \left(={R}\right)=\frac{\mathrm{3}}{\mathrm{2}{A}}=\mathrm{3}{r} \\ $$$${the}\:{third}\:{circle}\:{r}_{\mathrm{3}} =\frac{\mathrm{5}}{\mathrm{2}{A}}=\mathrm{5}{r} \\ $$$$.... \\ $$$${the}\:{n}−{th}\:{circle}\:{r}_{{n}} =\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}{A}}=\left(\mathrm{2}{n}−\mathrm{1}\right){r} \\ $$

Commented by ajfour last updated on 26/Jan/18

i had suspected so. Thanks Sir.

$${i}\:{had}\:{suspected}\:{so}.\:{Thanks}\:{Sir}. \\ $$

Answered by mrW2 last updated on 25/Jan/18

let the eqn. of parabola be  y=ax^2     eqn. of circle r:  x^2 +(y−r)^2 =r^2     x^2 +(ax^2 −r)^2 =r^2   a^2 x^4 −(2ar−1)x^2 =0  x^2 [a^2 x^2 −(2ar−1)]=0  x=0  x^2 =((2ar−1)/a^2 )  so that the circle touches the parabola  only at one point x=0,  ⇒2ar−1≤0  ⇒2ar≤1    eqn. of circle R:  x^2 +(y−2r−R)^2 =R^2     x^2 +(ax^2 −2r−R)^2 =R^2   a^2 x^4 −[2a(2r+R)−1]x^2 +4r(r+R)=0  Δ=[2a(2r+R)−1]^2 −16a^2 r(r+R)=0  4a^2 (2r+R)^2 −4a(2r+R)+1−16a^2 r^2 −16a^2 rR=0  16a^2 r^2 +4a^2 R^2 +16a^2 rR−8ar−4aR+1−16a^2 r^2 −16a^2 rR=0  4(aR)^2 −4(aR)−(8ar−1)=0    aR=((4+(√(4^2 +4×4(8ar−1))))/(2×4))=((1+(√(8ar)))/2)  R=((1+(√(8ar)))/(2ar))×r=((1+(√4))/1)r=3r

$${let}\:{the}\:{eqn}.\:{of}\:{parabola}\:{be} \\ $$$${y}={ax}^{\mathrm{2}} \\ $$$$ \\ $$$${eqn}.\:{of}\:{circle}\:{r}: \\ $$$${x}^{\mathrm{2}} +\left({y}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$ \\ $$$${x}^{\mathrm{2}} +\left({ax}^{\mathrm{2}} −{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${a}^{\mathrm{2}} {x}^{\mathrm{4}} −\left(\mathrm{2}{ar}−\mathrm{1}\right){x}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} \left[{a}^{\mathrm{2}} {x}^{\mathrm{2}} −\left(\mathrm{2}{ar}−\mathrm{1}\right)\right]=\mathrm{0} \\ $$$${x}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} =\frac{\mathrm{2}{ar}−\mathrm{1}}{{a}^{\mathrm{2}} } \\ $$$${so}\:{that}\:{the}\:{circle}\:{touches}\:{the}\:{parabola} \\ $$$${only}\:{at}\:{one}\:{point}\:{x}=\mathrm{0}, \\ $$$$\Rightarrow\mathrm{2}{ar}−\mathrm{1}\leqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}{ar}\leqslant\mathrm{1} \\ $$$$ \\ $$$${eqn}.\:{of}\:{circle}\:{R}: \\ $$$${x}^{\mathrm{2}} +\left({y}−\mathrm{2}{r}−{R}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$ \\ $$$${x}^{\mathrm{2}} +\left({ax}^{\mathrm{2}} −\mathrm{2}{r}−{R}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${a}^{\mathrm{2}} {x}^{\mathrm{4}} −\left[\mathrm{2}{a}\left(\mathrm{2}{r}+{R}\right)−\mathrm{1}\right]{x}^{\mathrm{2}} +\mathrm{4}{r}\left({r}+{R}\right)=\mathrm{0} \\ $$$$\Delta=\left[\mathrm{2}{a}\left(\mathrm{2}{r}+{R}\right)−\mathrm{1}\right]^{\mathrm{2}} −\mathrm{16}{a}^{\mathrm{2}} {r}\left({r}+{R}\right)=\mathrm{0} \\ $$$$\mathrm{4}{a}^{\mathrm{2}} \left(\mathrm{2}{r}+{R}\right)^{\mathrm{2}} −\mathrm{4}{a}\left(\mathrm{2}{r}+{R}\right)+\mathrm{1}−\mathrm{16}{a}^{\mathrm{2}} {r}^{\mathrm{2}} −\mathrm{16}{a}^{\mathrm{2}} {rR}=\mathrm{0} \\ $$$$\mathrm{16}{a}^{\mathrm{2}} {r}^{\mathrm{2}} +\mathrm{4}{a}^{\mathrm{2}} {R}^{\mathrm{2}} +\mathrm{16}{a}^{\mathrm{2}} {rR}−\mathrm{8}{ar}−\mathrm{4}{aR}+\mathrm{1}−\mathrm{16}{a}^{\mathrm{2}} {r}^{\mathrm{2}} −\mathrm{16}{a}^{\mathrm{2}} {rR}=\mathrm{0} \\ $$$$\mathrm{4}\left({aR}\right)^{\mathrm{2}} −\mathrm{4}\left({aR}\right)−\left(\mathrm{8}{ar}−\mathrm{1}\right)=\mathrm{0} \\ $$$$ \\ $$$${aR}=\frac{\mathrm{4}+\sqrt{\mathrm{4}^{\mathrm{2}} +\mathrm{4}×\mathrm{4}\left(\mathrm{8}{ar}−\mathrm{1}\right)}}{\mathrm{2}×\mathrm{4}}=\frac{\mathrm{1}+\sqrt{\mathrm{8}{ar}}}{\mathrm{2}} \\ $$$${R}=\frac{\mathrm{1}+\sqrt{\mathrm{8}{ar}}}{\mathrm{2}{ar}}×{r}=\frac{\mathrm{1}+\sqrt{\mathrm{4}}}{\mathrm{1}}{r}=\mathrm{3}{r} \\ $$

Commented by ajfour last updated on 25/Jan/18

Thanks for confirming, Sir!

$${Thanks}\:{for}\:{confirming},\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com