Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 28432 by abdo imad last updated on 25/Jan/18

let put w=e^(i((2π)/n))  calculate  S_n =  Σ_(k=0) ^(n−1)    (1/(x−w^k ))  and  W_n = Σ_(k=0) ^(n−1)   (1/((x−w^k )^2 )) .

$${let}\:{put}\:{w}={e}^{{i}\frac{\mathrm{2}\pi}{{n}}} \:{calculate}\:\:{S}_{{n}} =\:\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\:\frac{\mathrm{1}}{{x}−{w}^{{k}} }\:\:{and} \\ $$$${W}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\mathrm{1}}{\left({x}−{w}^{{k}} \right)^{\mathrm{2}} }\:. \\ $$

Commented by abdo imad last updated on 27/Jan/18

let introduce the polynomial p(x)= x^n −1  the roots of  p(x)are the complex z_k  =e^(i((2kπ)/n))    and k∈[[0,n−1]]  we know that  ((p^′ (x))/(p(x))) = Σ_(k=0) ^(n−1)    (1/(x−z_k )) =Σ_(k=0) ^(n−1)   (1/(x−w^k )) so  S_n  = ((nx^(n−1) )/(x^n −1))  also we have by derivation  (d/dx)( ((p^′ (x))/(p(x))))=−Σ_(k=0) ^(n−1)   (1/((x−w^k )^2 ))  ⇒((p^(′′) (x)p(x) −(p^′ (x))^2 )/((p(x))^2 ))=−Σ_(k=0) ^(n−1)     (1/((x−w^k )^2 ))  W_n  =−((n(n−1)x^(n−2) ( x^n −1) −(nx^(n−1) )^2 )/((x^n  −1)^2 ))  =−((n(n−1) x^(2n−2)  −n(n−1)x^(n−2)  −n^2 x^(2n−2) )/((x^n −1)^2 ))  =−((−n x^(2n−2)  −n(n−1)x^(n−2) )/((x^n −1)^2 ))=((n x^(2n−2)  −n(n−1)x^(n−2) )/((x^n −1)^2 ))  for n≥2 .

$${let}\:{introduce}\:{the}\:{polynomial}\:{p}\left({x}\right)=\:{x}^{{n}} −\mathrm{1}\:\:{the}\:{roots}\:{of} \\ $$$${p}\left({x}\right){are}\:{the}\:{complex}\:{z}_{{k}} \:={e}^{{i}\frac{\mathrm{2}{k}\pi}{{n}}} \:\:\:{and}\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right] \\ $$$${we}\:{know}\:{that}\:\:\frac{{p}^{'} \left({x}\right)}{{p}\left({x}\right)}\:=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\:\frac{\mathrm{1}}{{x}−{z}_{{k}} }\:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\mathrm{1}}{{x}−{w}^{{k}} }\:{so} \\ $$$${S}_{{n}} \:=\:\frac{{nx}^{{n}−\mathrm{1}} }{{x}^{{n}} −\mathrm{1}}\:\:{also}\:{we}\:{have}\:{by}\:{derivation} \\ $$$$\frac{{d}}{{dx}}\left(\:\frac{{p}^{'} \left({x}\right)}{{p}\left({x}\right)}\right)=−\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\mathrm{1}}{\left({x}−{w}^{{k}} \right)^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{p}^{''} \left({x}\right){p}\left({x}\right)\:−\left({p}^{'} \left({x}\right)\right)^{\mathrm{2}} }{\left({p}\left({x}\right)\right)^{\mathrm{2}} }=−\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\:\:\frac{\mathrm{1}}{\left({x}−{w}^{{k}} \right)^{\mathrm{2}} } \\ $$$${W}_{{n}} \:=−\frac{{n}\left({n}−\mathrm{1}\right){x}^{{n}−\mathrm{2}} \left(\:{x}^{{n}} −\mathrm{1}\right)\:−\left({nx}^{{n}−\mathrm{1}} \right)^{\mathrm{2}} }{\left({x}^{{n}} \:−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=−\frac{{n}\left({n}−\mathrm{1}\right)\:{x}^{\mathrm{2}{n}−\mathrm{2}} \:−{n}\left({n}−\mathrm{1}\right){x}^{{n}−\mathrm{2}} \:−{n}^{\mathrm{2}} {x}^{\mathrm{2}{n}−\mathrm{2}} }{\left({x}^{{n}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=−\frac{−{n}\:{x}^{\mathrm{2}{n}−\mathrm{2}} \:−{n}\left({n}−\mathrm{1}\right){x}^{{n}−\mathrm{2}} }{\left({x}^{{n}} −\mathrm{1}\right)^{\mathrm{2}} }=\frac{{n}\:{x}^{\mathrm{2}{n}−\mathrm{2}} \:−{n}\left({n}−\mathrm{1}\right){x}^{{n}−\mathrm{2}} }{\left({x}^{{n}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${for}\:{n}\geqslant\mathrm{2}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com