All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 28432 by abdo imad last updated on 25/Jan/18
letputw=ei2πncalculateSn=∑k=0n−11x−wkandWn=∑k=0n−11(x−wk)2.
Commented by abdo imad last updated on 27/Jan/18
letintroducethepolynomialp(x)=xn−1therootsofp(x)arethecomplexzk=ei2kπnandk∈[[0,n−1]]weknowthatp′(x)p(x)=∑k=0n−11x−zk=∑k=0n−11x−wksoSn=nxn−1xn−1alsowehavebyderivationddx(p′(x)p(x))=−∑k=0n−11(x−wk)2⇒p″(x)p(x)−(p′(x))2(p(x))2=−∑k=0n−11(x−wk)2Wn=−n(n−1)xn−2(xn−1)−(nxn−1)2(xn−1)2=−n(n−1)x2n−2−n(n−1)xn−2−n2x2n−2(xn−1)2=−−nx2n−2−n(n−1)xn−2(xn−1)2=nx2n−2−n(n−1)xn−2(xn−1)2forn⩾2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com