Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 2845 by Rasheed Soomro last updated on 28/Nov/15

While you are in between the project  I am trying to improve my digestiblity to  digest the concept of ′analytical continuation′.    First we make aformula to sum n terms of a powe series:  ((x^n −1)/(x−1))=1+x+x^2 +...+x^n   latter we change it for ∣x∣<1 and n→∞ [x^n →0]   (1/(1−x))=1+x+x^2 +...+x^n   and now insist to use this formula also for ∣x∣>1. WHY?  [If  ∣x∣ were greater than 1,then x^n ↛0 and  ((x^n −1)/(x−1)) mustn′t  be replaced by (1/(1−x)) ]

$$\mathcal{W}{hile}\:{you}\:{are}\:{in}\:{between}\:{the}\:{project} \\ $$$$\mathcal{I}\:{am}\:{trying}\:{to}\:{improve}\:{my}\:{digestiblity}\:{to} \\ $$$${digest}\:{the}\:{concept}\:{of}\:'{analytical}\:{continuation}'. \\ $$$$ \\ $$$${First}\:{we}\:{make}\:{aformula}\:{to}\:{sum}\:{n}\:{terms}\:{of}\:{a}\:{powe}\:{series}: \\ $$$$\frac{{x}^{{n}} −\mathrm{1}}{{x}−\mathrm{1}}=\mathrm{1}+{x}+{x}^{\mathrm{2}} +...+{x}^{{n}} \\ $$$${latter}\:{we}\:{change}\:{it}\:{for}\:\mid{x}\mid<\mathrm{1}\:{and}\:{n}\rightarrow\infty\:\left[{x}^{{n}} \rightarrow\mathrm{0}\right] \\ $$$$\:\frac{\mathrm{1}}{\mathrm{1}−{x}}=\mathrm{1}+{x}+{x}^{\mathrm{2}} +...+{x}^{{n}} \\ $$$${and}\:{now}\:{insist}\:{to}\:{use}\:{this}\:{formula}\:{also}\:{for}\:\mid{x}\mid>\mathrm{1}.\:\mathcal{WHY}? \\ $$$$\left[{If}\:\:\mid{x}\mid\:{were}\:{greater}\:{than}\:\mathrm{1},{then}\:{x}^{{n}} \nrightarrow\mathrm{0}\:{and}\:\:\frac{{x}^{{n}} −\mathrm{1}}{{x}−\mathrm{1}}\:{mustn}'{t}\right. \\ $$$$\left.{be}\:{replaced}\:{by}\:\frac{\mathrm{1}}{\mathrm{1}−{x}}\:\right] \\ $$$$ \\ $$

Answered by prakash jain last updated on 29/Nov/15

There are a few things involved in  understanding analytical continuation:  • Analytical function f_1  over domain D_1   • Analytical continuation of f_1  to domain      D_2  (provided f_1 =f_2  for D_1 ∩D_2 )  •  Uniqueness of analytical continuation to D_2       Which states f_2  is unique or analytical      continuation of f_1  to D_2  is unique.  Uniqueness property of continuation provides  ability to assign unique value for f_1  at point  where f_1  is not defined.  I think uniqueness is the property which  allows us to give values like −1 =Σ_(i=0) ^∞ 2^i   I will add more details for each of above  points.  123456 might want to correct me or add more  details.

$$\mathrm{There}\:\mathrm{are}\:\mathrm{a}\:\mathrm{few}\:\mathrm{things}\:\mathrm{involved}\:\mathrm{in} \\ $$$$\mathrm{understanding}\:\mathrm{analytical}\:\mathrm{continuation}: \\ $$$$\bullet\:\mathrm{Analytical}\:\mathrm{function}\:{f}_{\mathrm{1}} \:\mathrm{over}\:\mathrm{domain}\:\mathrm{D}_{\mathrm{1}} \\ $$$$\bullet\:\mathrm{Analytical}\:\mathrm{continuation}\:\mathrm{of}\:{f}_{\mathrm{1}} \:\mathrm{to}\:\mathrm{domain} \\ $$$$\:\:\:\:\mathrm{D}_{\mathrm{2}} \:\left(\mathrm{provided}\:{f}_{\mathrm{1}} ={f}_{\mathrm{2}} \:\mathrm{for}\:\mathrm{D}_{\mathrm{1}} \cap\mathrm{D}_{\mathrm{2}} \right) \\ $$$$\bullet\:\:\mathrm{Uniqueness}\:\mathrm{of}\:\mathrm{analytical}\:\mathrm{continuation}\:\mathrm{to}\:\mathrm{D}_{\mathrm{2}} \\ $$$$\:\:\:\:\mathrm{Which}\:\mathrm{states}\:{f}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{unique}\:\mathrm{or}\:\mathrm{analytical} \\ $$$$\:\:\:\:\mathrm{continuation}\:\mathrm{of}\:{f}_{\mathrm{1}} \:\mathrm{to}\:\mathrm{D}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{unique}. \\ $$$$\mathrm{Uniqueness}\:\mathrm{property}\:\mathrm{of}\:\mathrm{continuation}\:\mathrm{provides} \\ $$$$\mathrm{ability}\:\mathrm{to}\:\mathrm{assign}\:\mathrm{unique}\:\mathrm{value}\:\mathrm{for}\:{f}_{\mathrm{1}} \:\mathrm{at}\:\mathrm{point} \\ $$$$\mathrm{where}\:{f}_{\mathrm{1}} \:\mathrm{is}\:\mathrm{not}\:\mathrm{defined}. \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{uniqueness}\:\mathrm{is}\:\mathrm{the}\:\mathrm{property}\:\mathrm{which} \\ $$$$\mathrm{allows}\:\mathrm{us}\:\mathrm{to}\:\mathrm{give}\:\mathrm{values}\:\mathrm{like}\:−\mathrm{1}\:=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{2}^{{i}} \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{add}\:\mathrm{more}\:\mathrm{details}\:\mathrm{for}\:\mathrm{each}\:\mathrm{of}\:\mathrm{above} \\ $$$$\mathrm{points}. \\ $$$$\mathrm{123456}\:\mathrm{might}\:\mathrm{want}\:\mathrm{to}\:\mathrm{correct}\:\mathrm{me}\:\mathrm{or}\:\mathrm{add}\:\mathrm{more} \\ $$$$\mathrm{details}. \\ $$

Commented by Rasheed Soomro last updated on 29/Nov/15

Why we should be ready for changing domain.  Only for   ′′Uniqueness property of continuation provides  ability to assign unique value for f_1  at point  where f_1  is not defined.′′  ?  Why we accept unreasonable results only for  this uniqueness?

$$\mathcal{W}{hy}\:{we}\:{should}\:{be}\:{ready}\:{for}\:{changing}\:{domain}. \\ $$$${Only}\:{for}\: \\ $$$$''\mathrm{Uniqueness}\:\mathrm{property}\:\mathrm{of}\:\mathrm{continuation}\:\mathrm{provides} \\ $$$$\mathrm{ability}\:\mathrm{to}\:\mathrm{assign}\:\mathrm{unique}\:\mathrm{value}\:\mathrm{for}\:{f}_{\mathrm{1}} \:\mathrm{at}\:\mathrm{point} \\ $$$$\mathrm{where}\:{f}_{\mathrm{1}} \:\mathrm{is}\:\mathrm{not}\:\mathrm{defined}.''\:\:? \\ $$$$\mathcal{W}{hy}\:{we}\:{accept}\:{unreasonable}\:{results}\:{only}\:{for} \\ $$$${this}\:\mathrm{uniqueness}? \\ $$

Commented by 123456 last updated on 29/Nov/15

i dont think this help, but  suppose we have  f:R→R  and want to build f in form of a polinomy  we can write (under certains conditions)  f(x)=Σ_(n=0) ^(+∞) a_n (x−x_0 )^n   a_n =((f^((n)) (x_0 ))/(n!))  this serie is a called taylor serie of f  near point (x_0 =0)  (we can extend it to C, but lets stay  simple for now)  this serie defines a power serie to any  function (under certains condictions)  like  f(x)=sin x=x−(x^3 /(3!))+(x^5 /(5!))−∙∙∙  inside their comvergence radius, or more  direct  ∣x−x_0 ∣<R⇒f(x)=sin x=x−(x^3 /(3!))+∙∙∙  in case of sine, this radius is infinite  however its not all function that have  infinite radius, so in a gross way you  can take the analytic continuations as  a inverse way for this case

$$\mathrm{i}\:\mathrm{dont}\:\mathrm{think}\:\mathrm{this}\:\mathrm{help},\:\mathrm{but} \\ $$$$\mathrm{suppose}\:\mathrm{we}\:\mathrm{have} \\ $$$${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$$\mathrm{and}\:\mathrm{want}\:\mathrm{to}\:\mathrm{build}\:{f}\:\mathrm{in}\:\mathrm{form}\:\mathrm{of}\:\mathrm{a}\:\mathrm{polinomy} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{write}\:\left(\mathrm{under}\:\mathrm{certains}\:\mathrm{conditions}\right) \\ $$$${f}\left({x}\right)=\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}{a}_{{n}} \left({x}−{x}_{\mathrm{0}} \right)^{{n}} \\ $$$${a}_{{n}} =\frac{{f}^{\left({n}\right)} \left({x}_{\mathrm{0}} \right)}{{n}!} \\ $$$$\mathrm{this}\:\mathrm{serie}\:\mathrm{is}\:\mathrm{a}\:\mathrm{called}\:\mathrm{taylor}\:\mathrm{serie}\:\mathrm{of}\:{f} \\ $$$$\mathrm{near}\:\mathrm{point}\:\left({x}_{\mathrm{0}} =\mathrm{0}\right) \\ $$$$\left(\mathrm{we}\:\mathrm{can}\:\mathrm{extend}\:\mathrm{it}\:\mathrm{to}\:\mathbb{C},\:\mathrm{but}\:\mathrm{lets}\:\mathrm{stay}\right. \\ $$$$\left.\mathrm{simple}\:\mathrm{for}\:\mathrm{now}\right) \\ $$$$\mathrm{this}\:\mathrm{serie}\:\mathrm{defines}\:\mathrm{a}\:\mathrm{power}\:\mathrm{serie}\:\mathrm{to}\:\mathrm{any} \\ $$$$\mathrm{function}\:\left(\mathrm{under}\:\mathrm{certains}\:\mathrm{condictions}\right) \\ $$$$\mathrm{like} \\ $$$${f}\left({x}\right)=\mathrm{sin}\:{x}={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}−\centerdot\centerdot\centerdot \\ $$$$\mathrm{inside}\:\boldsymbol{\mathrm{their}}\:\boldsymbol{\mathrm{comvergence}}\:\boldsymbol{\mathrm{radius}},\:\mathrm{or}\:\mathrm{more} \\ $$$$\mathrm{direct} \\ $$$$\mid{x}−{x}_{\mathrm{0}} \mid<\mathrm{R}\Rightarrow{f}\left({x}\right)=\mathrm{sin}\:{x}={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\centerdot\centerdot\centerdot \\ $$$$\mathrm{in}\:\mathrm{case}\:\mathrm{of}\:\mathrm{sine},\:\mathrm{this}\:\mathrm{radius}\:\mathrm{is}\:\mathrm{infinite} \\ $$$$\mathrm{however}\:\mathrm{its}\:\mathrm{not}\:\mathrm{all}\:\mathrm{function}\:\mathrm{that}\:\mathrm{have} \\ $$$$\mathrm{infinite}\:\mathrm{radius},\:\mathrm{so}\:\mathrm{in}\:\mathrm{a}\:\mathrm{gross}\:\mathrm{way}\:\mathrm{you} \\ $$$$\mathrm{can}\:\mathrm{take}\:\mathrm{the}\:\mathrm{analytic}\:\mathrm{continuations}\:\mathrm{as} \\ $$$$\mathrm{a}\:\mathrm{inverse}\:\mathrm{way}\:\mathrm{for}\:\mathrm{this}\:\mathrm{case} \\ $$

Commented by Rasheed Soomro last updated on 29/Nov/15

T h a n k S  to BOTH of YOU !

$$\mathcal{T}\:\boldsymbol{{h}}\:\boldsymbol{{a}}\:\boldsymbol{{n}}\:\boldsymbol{{k}}\:\mathcal{S}\:\:{to}\:\mathcal{BOTH}\:{of}\:\mathcal{YOU}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com