Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 28464 by ajfour last updated on 26/Jan/18

Answered by mrW2 last updated on 26/Jan/18

eqn. of ellipse:  (x^2 /a^2 )+(y^2 /b^2 )=1  ((2x)/a^2 )+((2y)/b^2 )×(dy/dx)=0  ⇒(dy/dx)=−(b^2 /a^2 )×(x/y)=inclination of tangent  ⇒tan ϕ=inclination of normal=(a^2 /b^2 )×(y/x)  (y/x)=tan φ  ⇒tan ϕ=(a^2 /b^2 ) tan φ  θ=ϕ−φ  ⇒tan θ=(((a^2 /b^2 ) tan φ−tan φ)/(1+(a^2 /b^2 ) tan^2  φ))=(((1−(b^2 /a^2 ))tan φ)/((b^2 /a^2 )+tan^2  φ))=(((1−k^2 )tan φ)/(k^2 +tan^2  φ))  with k=(b/a)  ⇒tan θ=(((1−k^2 )tan φ)/(k^2 +tan^2  φ))=((1−k^2 )/((k^2 /(tan φ))+tan φ))≤((1−k^2 )/(2(√((k^2 /(tan φ))×tan φ))))=((1−k^2 )/(2k))  i.e. tan θ_(max) =((1−k^2 )/(2k))=((a^2 −b^2 )/(2ab))  or θ_(max) =tan^(−1) ((1−k^2 )/(2k))=tan^(−1) ((a^2 −b^2 )/(2ab))  at (k^2 /(tan φ))=tan φ or φ=±tan^(−1) k=±tan^(−1) (b/a)

$${eqn}.\:{of}\:{ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{\mathrm{2}{x}}{{a}^{\mathrm{2}} }+\frac{\mathrm{2}{y}}{{b}^{\mathrm{2}} }×\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }×\frac{{x}}{{y}}={inclination}\:{of}\:{tangent} \\ $$$$\Rightarrow\mathrm{tan}\:\varphi={inclination}\:{of}\:{normal}=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }×\frac{{y}}{{x}} \\ $$$$\frac{{y}}{{x}}=\mathrm{tan}\:\phi \\ $$$$\Rightarrow\mathrm{tan}\:\varphi=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:\mathrm{tan}\:\phi \\ $$$$\theta=\varphi−\phi \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:\mathrm{tan}\:\phi−\mathrm{tan}\:\phi}{\mathrm{1}+\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:\mathrm{tan}^{\mathrm{2}} \:\phi}=\frac{\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)\mathrm{tan}\:\phi}{\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\mathrm{tan}^{\mathrm{2}} \:\phi}=\frac{\left(\mathrm{1}−{k}^{\mathrm{2}} \right)\mathrm{tan}\:\phi}{{k}^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\phi} \\ $$$${with}\:{k}=\frac{{b}}{{a}} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{\left(\mathrm{1}−{k}^{\mathrm{2}} \right)\mathrm{tan}\:\phi}{{k}^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\phi}=\frac{\mathrm{1}−{k}^{\mathrm{2}} }{\frac{{k}^{\mathrm{2}} }{\mathrm{tan}\:\phi}+\mathrm{tan}\:\phi}\leqslant\frac{\mathrm{1}−{k}^{\mathrm{2}} }{\mathrm{2}\sqrt{\frac{{k}^{\mathrm{2}} }{\mathrm{tan}\:\phi}×\mathrm{tan}\:\phi}}=\frac{\mathrm{1}−{k}^{\mathrm{2}} }{\mathrm{2}{k}} \\ $$$${i}.{e}.\:\mathrm{tan}\:\theta_{{max}} =\frac{\mathrm{1}−{k}^{\mathrm{2}} }{\mathrm{2}{k}}=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{ab}} \\ $$$${or}\:\theta_{{max}} =\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}−{k}^{\mathrm{2}} }{\mathrm{2}{k}}=\mathrm{tan}^{−\mathrm{1}} \frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{ab}} \\ $$$${at}\:\frac{{k}^{\mathrm{2}} }{\mathrm{tan}\:\phi}=\mathrm{tan}\:\phi\:{or}\:\phi=\pm\mathrm{tan}^{−\mathrm{1}} {k}=\pm\mathrm{tan}^{−\mathrm{1}} \frac{{b}}{{a}} \\ $$

Commented by ajfour last updated on 26/Jan/18

great, suggests a shorter method  hopefully!

$${great},\:{suggests}\:{a}\:{shorter}\:{method} \\ $$$${hopefully}! \\ $$

Commented by ajfour last updated on 26/Jan/18

Thanks Sir.

$${Thanks}\:{Sir}. \\ $$

Commented by mrW2 last updated on 26/Jan/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com