Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 28501 by naka3546 last updated on 26/Jan/18

Commented by naka3546 last updated on 26/Jan/18

ABCD  is  not  square.  Length DE  ?

ABCDisnotsquare.LengthDE?

Answered by mrW2 last updated on 26/Jan/18

let ∠ABD=θ  ∠EBC=90−θ  ∠BEC=∠BCE=(1/2)(180−∠EBC)=45+(θ/2)  ∠ECF=90−(45+(θ/2))=45−(θ/2)  AB=8+1=9  CB=AD=9 tan θ  EC=8 cos (45−(θ/2))  EC=2×9 tan θ ×sin (45−(θ/2))  ⇒8 cos (45−(θ/2))=2×9 tan θ ×sin (45−(θ/2))  ⇒4=9 tan θ ×tan (45−(θ/2))  ⇒4=9 tan θ ×((1−tan (θ/2))/(1+tan (θ/2)))  ⇒4=9×((2tan (θ/2))/(1−tan^2  (θ/2)))×((1−tan (θ/2))/(1+tan (θ/2)))  ⇒2=9×((tan (θ/2))/(1+tan (θ/2)))×(1/(1+tan (θ/2)))  ⇒2×(1+tan (θ/2))^2 =9×tan (θ/2)  ⇒4 tan^2  (θ/2)−5 tan (θ/2)+2=0  ⇒(2 tan (θ/2)−1)(tan (θ/2)−2)=0  ⇒tan (θ/2)=(1/2) or 2 (not suitable)  ⇒tan θ=((2×(1/2))/(1−((1/2))^2 ))=(4/3)  ⇒cos θ=(3/5)  EB=AD=9 tan θ=9×(4/3)=12  DB=(9/(cos θ))=((9×5)/3)=15  ⇒DE=15−12=3

letABD=θEBC=90θBEC=BCE=12(180EBC)=45+θ2ECF=90(45+θ2)=45θ2AB=8+1=9CB=AD=9tanθEC=8cos(45θ2)EC=2×9tanθ×sin(45θ2)8cos(45θ2)=2×9tanθ×sin(45θ2)4=9tanθ×tan(45θ2)4=9tanθ×1tanθ21+tanθ24=9×2tanθ21tan2θ2×1tanθ21+tanθ22=9×tanθ21+tanθ2×11+tanθ22×(1+tanθ2)2=9×tanθ24tan2θ25tanθ2+2=0(2tanθ21)(tanθ22)=0tanθ2=12or2(notsuitable)tanθ=2×121(12)2=43cosθ=35EB=AD=9tanθ=9×43=12DB=9cosθ=9×53=15DE=1512=3

Answered by ajfour last updated on 26/Jan/18

let AD=BE=BC=y , DE=x,  ∠ABD=θ , then  4cos θ=xsin θ     ....(i)  (x+y)cos θ=9    ....(ii)  (x+y)sin θ=y    ....(iii)   ⇒  tan θ=(4/x)=(y/9)  ⇒   y=((36)/x)  also   (x+y)^2 =y^2 +81  ⇒   x^2 +2xy=81         x^2 +2x(((36)/x))=81        x^2 =9     or  x=3  .

letAD=BE=BC=y,DE=x,ABD=θ,then4cosθ=xsinθ....(i)(x+y)cosθ=9....(ii)(x+y)sinθ=y....(iii)tanθ=4x=y9y=36xalso(x+y)2=y2+81x2+2xy=81x2+2x(36x)=81x2=9orx=3.

Commented by mrW2 last updated on 27/Jan/18

Great!

Great!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com