Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 28529 by abdo imad last updated on 26/Jan/18

solve the d.e. (x^2 −1)y^′ +xy= x^2 −e^x  .

$${solve}\:{the}\:{d}.{e}.\:\left({x}^{\mathrm{2}} −\mathrm{1}\right){y}^{'} +{xy}=\:{x}^{\mathrm{2}} −{e}^{{x}} \:. \\ $$

Commented by abdo imad last updated on 28/Jan/18

h.e.  (x^2 −1)y^′  =−xy ⇒ (y^′ /y)= ((−x)/(x^2 −1))  ⇒ln∣y∣= ∫ (x/(1−x^2 ))dx  =((−1)/2)ln∣1−x^2 ∣  +c  =ln((1/(√(∣1−x^2 ∣)))) +c ⇒y= (λ/(√(∣1−x^2 ∣))) let use mvc method  case1    ∣x∣<1 ⇒y= λ(1−x^2 )^(−(1/2))   y^′ = λ^′ (1−x^2 )^((−1)/2) +λx(1−x^2 )^((−3)/(2  ))      (e) ⇒  −λ^′ (1−x^2 )^(1/2) −λx (1−x^2 )^((−1)/2)  +λx(1−x^2 )^((−1)/2) =x^2  −e^x   ⇒ λ^′ (1−x^2 )^(1/2) = e^x  −x^2   ⇒ λ^′ =  (e^x  −x^2 )(1−x^2 )^((−1)/2)   ⇒  λ(x) =  ∫_. ^x    ((e^t  −t^2 )/(√(1−t^2 )))dt  +k   and  y(x)= (1/(√(1−x^2 )))(   ∫_. ^x    ((e^t  −t^2 )/(√(1−t^2 )))dt  +k)  .

$${h}.{e}.\:\:\left({x}^{\mathrm{2}} −\mathrm{1}\right){y}^{'} \:=−{xy}\:\Rightarrow\:\frac{{y}^{'} }{{y}}=\:\frac{−{x}}{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\Rightarrow{ln}\mid{y}\mid=\:\int\:\frac{{x}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}\:\:=\frac{−\mathrm{1}}{\mathrm{2}}{ln}\mid\mathrm{1}−{x}^{\mathrm{2}} \mid\:\:+{c} \\ $$$$={ln}\left(\frac{\mathrm{1}}{\sqrt{\mid\mathrm{1}−{x}^{\mathrm{2}} \mid}}\right)\:+{c}\:\Rightarrow{y}=\:\frac{\lambda}{\sqrt{\mid\mathrm{1}−{x}^{\mathrm{2}} \mid}}\:{let}\:{use}\:{mvc}\:{method} \\ $$$${case}\mathrm{1}\:\:\:\:\mid{x}\mid<\mathrm{1}\:\Rightarrow{y}=\:\lambda\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${y}^{'} =\:\lambda^{'} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\frac{−\mathrm{1}}{\mathrm{2}}} +\lambda{x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\frac{−\mathrm{3}}{\mathrm{2}\:\:}} \:\:\:\:\:\left({e}\right)\:\Rightarrow \\ $$$$−\lambda^{'} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} −\lambda{x}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\frac{−\mathrm{1}}{\mathrm{2}}} \:+\lambda{x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\frac{−\mathrm{1}}{\mathrm{2}}} ={x}^{\mathrm{2}} \:−{e}^{{x}} \\ $$$$\Rightarrow\:\lambda^{'} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\:{e}^{{x}} \:−{x}^{\mathrm{2}} \\ $$$$\Rightarrow\:\lambda^{'} =\:\:\left({e}^{{x}} \:−{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\frac{−\mathrm{1}}{\mathrm{2}}} \:\:\Rightarrow \\ $$$$\lambda\left({x}\right)\:=\:\:\int_{.} ^{{x}} \:\:\:\frac{{e}^{{t}} \:−{t}^{\mathrm{2}} }{\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt}\:\:+{k}\:\:\:{and} \\ $$$${y}\left({x}\right)=\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\left(\:\:\:\int_{.} ^{{x}} \:\:\:\frac{{e}^{{t}} \:−{t}^{\mathrm{2}} }{\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt}\:\:+{k}\right)\:\:. \\ $$

Commented by abdo imad last updated on 28/Jan/18

for case 2  ∣x∣ >1 we folow the same method.

$${for}\:{case}\:\mathrm{2}\:\:\mid{x}\mid\:>\mathrm{1}\:{we}\:{folow}\:{the}\:{same}\:{method}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com