Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 28533 by abdo imad last updated on 26/Jan/18

let give the matrice  A=  (((1         2   )),((2           1)) )  calculate  A^n   then find  e^A  .

letgivethematriceA=(1221)calculateAnthenfindeA.

Commented by abdo imad last updated on 28/Jan/18

we have  A = I  +2J  with   I = (((1       0)),((0        1)) )  and  J=  (((0      1)),((1       0 )) )  we have J^2 = I ⇒ J^(2n)  =I and J^(2n+1) =J  A= I +2J  with the condition IJ=JI  A^n =(2J +I)^n = Σ_(k=0) ^n  C_n ^k  (2J)^k    = Σ_(k=0) ^n  2^k   C_n ^k  J^k  = Σ(_(k=2p) ...) +Σ_(k=2p+1)    (...)  = Σ_(p=0) ^([(n/2)])    2^(2p)  C_n ^(2p ) I  +Σ_(p=0) ^([((n−1)/2)])   2^(2p+1)   C_n ^(2p+1)   J  = (((Σ_(p=0) ^([(n/2)])  2^(2p)  C_n ^(2p)                  0      )),((0                            Σ_(p=0) ^([(n/2)])  2^(2p)  C_n ^(2p) )) )  + (((0                    Σ_(p=0) ^([((n−1)/2)])  2^(2p+1)   C_n ^(2p+1)    )),((Σ_(p=0) ^([((n−1)/2)])  2^(2p+1)  C_n ^(2p+1)                0)) )  =  (((x_n           y_n )),(y_(n                   x_n ) ) )  with   x_n = Σ_(p=0) ^([(n/2)])    2^(2p)   C_n ^(2p)   and y_n =Σ_(p=0) ^([((n−1)/2)])  2^(2p+1)  C_n ^(2p+1)    .  e^A   = Σ_(n=0) ^∞     (A^n /(n!))= ((( Σ (x_n /(n!))            Σ(y_n /(n!))     )),((Σ(y_n /(n!))                  Σ(x_n /(n!)) )) )

wehaveA=I+2JwithI=(1001)andJ=(0110)wehaveJ2=IJ2n=IandJ2n+1=JA=I+2JwiththeconditionIJ=JIAn=(2J+I)n=k=0nCnk(2J)k=k=0n2kCnkJk=Σ(k=2p...)+k=2p+1(...)=p=0[n2]22pCn2pI+p=0[n12]22p+1Cn2p+1J=(p=0[n2]22pCn2p00p=0[n2]22pCn2p)+(0p=0[n12]22p+1Cn2p+1p=0[n12]22p+1Cn2p+10)=(xnynynxn)withxn=p=0[n2]22pCn2pandyn=p=0[n12]22p+1Cn2p+1.eA=n=0Ann!=(Σxnn!Σynn!Σynn!Σxnn!)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com