All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 28533 by abdo imad last updated on 26/Jan/18
letgivethematriceA=(1221)calculateAnthenfindeA.
Commented by abdo imad last updated on 28/Jan/18
wehaveA=I+2JwithI=(1001)andJ=(0110)wehaveJ2=I⇒J2n=IandJ2n+1=JA=I+2JwiththeconditionIJ=JIAn=(2J+I)n=∑k=0nCnk(2J)k=∑k=0n2kCnkJk=Σ(k=2p...)+∑k=2p+1(...)=∑p=0[n2]22pCn2pI+∑p=0[n−12]22p+1Cn2p+1J=(∑p=0[n2]22pCn2p00∑p=0[n2]22pCn2p)+(0∑p=0[n−12]22p+1Cn2p+1∑p=0[n−12]22p+1Cn2p+10)=(xnynynxn)withxn=∑p=0[n2]22pCn2pandyn=∑p=0[n−12]22p+1Cn2p+1.eA=∑n=0∞Ann!=(Σxnn!Σynn!Σynn!Σxnn!)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com